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We show that the scattering interaction between a high energy electron and a photon can be strongly enhanced
by different types of localized plasmons in a nontrivial way. The scattering interaction is predicted by an
eigen-response theory, numerically verified by finite-difference-time-domain simulation, and experimentally
verified by cathodoluminescence spectroscopy. We find that the scattering interaction associated with dark
plasmons can be as strong as that of bright plasmons. Such a strong interaction may offer new opportunities
to improve single-plasmon detection and high-resolution characterization techniques for high quality plasmonic
materials.
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I. INTRODUCTION

The strength of the near-field resonant response of plas-
monic nanostructures plays an important role in the pro-
cesses of spontaneous emission [1–3] and stimulated emission
[4–8]. Despite the rapid development of numerical simulation
techniques, the strength of resonant response of an arbitrary
plasmonic nanostructure is not easy to understand [9]. In
particular, the scattering interaction strength between electron
and photon mediated by plasmon resonance is nontrivial and,
meanwhile, very crucial for high resolution microscopy and
spectroscopy on plasmonic nanostructures.

Predicted by an eigen-response theory, dark plasmon
modes [10–12] are considered to be weakly radiative plasmon
modes in nanostructures which can give high gain factor in
stimulated emission [4,7]. Research interest in dark plasmon
modes and the associated Fano phenomena [13] has been
growing rapidly due to many potential applications such as
sensors, lasing, and nonlinear and slow-light devices [14–19].
Recently, dark plasmon modes have been observed in optical
nanoantennas [20] using electronic excitation [21–24]. This
presents great opportunity for using electron beam to study
the local strength of high quality plasmonic resonances in
spatial resolution smaller than 10 nm. More importantly, if
electron-beam excited dark plasmon can be observed by means
of photon detection such as in cathodoluminescence (CL)
spectroscopy [25], it will give great advantages in imaging
plasmonic nanostructures with simultaneous high spatial and
spectral resolutions. However, far-field detection of energy
from dark plasmons seems to be contradictory to their weak-
radiation properties. It is thus our intention to study whether
an electron can excite a dark plasmon with a strength that is
strong enough to radiate enough photons for the detection in
the far field.

In this paper, we use an eigen-response theory [11,26,27]
to study the strong interaction strength of electron-photon
scattering mediated by localized plasmons. The theory predicts
a counterintuitive response from dark plasmon, which leads to
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a strong scattering interaction between a high energy electron
and a photon. We use finite-difference-time-domain (FDTD)
simulation and CL spectroscopy to verify the theoretical
prediction by studying the scattering between electron and
photon close to a plasmonic nanoantenna. The theoretical
predictions agree with our CL experimental results.

The paper is organized as follows. We first describe our
eigen-response theory and its prediction in Sec. II. Then, we
present the verifications of the theoretical prediction by full-
wave simulations in Sec. III A and experiments in Sec. III B.

II. EIGEN-RESPONSE THEORY

We first briefly introduce the prediction from the eigen-
response theory. For a given excitation field Eexc(r,ω), the
general response polarization (dipole moment density) P(r,ω)
can be written as a linear combination of the eigenmodes
Pj (r,ω), where j is a label of one eigenmode. In an abstract-
vector form, it is written as [27]

|P 〉 =
∑

j
αeig,j |Pj 〉〈Pj |Eexc〉, (1)

where |Pj 〉 and λj (≡ α−1
eig,j ) are, respectively, the j th eigen-

mode and the j th eigenvalue of an operator M which is
defined in the relation between the excitation field Eexc(r,ω)
and the response P(r,ω) through M|P 〉 = |Eexc〉 [28]. Since
αeig,j has a dimension of polarizability, it is called eigen-
polarizability [29] of the j th eigenmode. As we will see below,
Eq. (1) suggests that a dark mode can contribute to a higher
detected signal than a bright mode does in some situations,
which seems to be contradictory to our usual belief.

To explain our prediction, let us consider a concrete
example (bowtie nanoantenna). Dark modes can be formed in
a system of coupled dipole resonators due to the hybridization
among dipole modes [11], such as in bowtie nanoantenna [20].
The hybridization diagram for a bowtie nanoantenna formed
by two equilateral Au triangles is shown in Fig. 1(a) for the
dominant in-plane dipole modes in single triangles. It should be
noted that the in-plane dipole modes in equilateral nanotriangle
are degenerate. A simple derivation is given in Appendix A.
When twofold degenerate dipole modes in each triangle
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FIG. 1. (Color online) Demonstration of selection rule for CL. (a) Schematic diagram illustrating the hybridization between left and
right particles, which form the dark modes in bowtie nanoantenna. “Span” indicates the degenerate space spanned by the dipole modes.
(b) Magnitudes of the eigenpolarizabilities, αeig, for the hybridized modes. The peaks indicate the resonant frequencies. (c) Predicted interaction
strength between electron beam and photon as a function of angle θ . Blue (red) curve represents the contribution by the dark (bright) mode.
The eigen-response theory predicts that the electron-photon scattering interaction strength mediated by dark plasmon can be higher than that of
the bright plasmon mode. Units are arbitrary. Each Au particle has a tip-to-base size of 110 nm and thickness of 50 nm. The two Au particles
are separated by a gap of 35 nm.

hybridize with the modes in the opposite triangle, there are four
hybridized modes which include horizontal dark and bright
modes indicated in Fig. 1(a) and the other almost degenerate
vertical modes. The magnitudes of the eigenpolarizabilities,
αeig, for these plasmon modes are shown in Fig. 1(b) with their
peaks indicating the resonant frequencies. The horizontal dark
and bright modes are well separated in frequency, while the
vertical modes are almost indistinguishable. In the following,
we will focus on distinguishing the horizontal dark and bright
plasmon modes. For a system that supports one dark mode
|PD〉 and one bright mode |PB〉, the radiation amplitude (i.e.,
the interaction strength with free photon) is

〈k|P 〉 = αeig,B〈k|PB〉〈PB |Eexc〉
+αeig,D〈k|PD〉〈PD|Eexc〉, (2)

where αeig,D and αeig,B are the eigenpolarizabilities of the dark
mode and bright mode, respectively, and |k〉 is a plane wave
with wave vector k.

In general, 〈k|PD〉 has a magnitude smaller than 〈k|PB〉.
However, a dark mode with higher quality factor should
also have larger magnitude of αeig at resonance [29]. As
a result, the magnitude of αeig,D〈k|PD〉 can be comparable
with αeig,B〈k|PB〉. In addition, a crucial factor that determines

the ultimate radiation is the projection magnitudes 〈PB |Eexc〉
and 〈PD|Eexc〉. By choosing a zero projection to the bright
mode, i.e., making 〈PB |Eexc〉 = 0, we can have strong photon
radiation dominated by the dark mode, which means a strongly
enhanced interaction between electron and photon by dark
plasmon. For an excitation by a high energy electron (30 keV),
the final interaction strength predicted by the theory is shown
in Fig. 1(c). The integrals for the projection magnitude for
different positions are given in Appendix B. The intermediate
steps in obtaining the final interaction strength are further
explained in Appendix C.

III. VERIFICATIONS

To support our prediction, we performed FDTD simulations
as well as experiments for the case of excitation by electron
beam, which is considered to be a fine and controllable
excitation source. In both our simulation and experiment,
a 30 keV electron beam is incident normally to a bowtie
nanoantenna. The three dimensional geometry of the bowtie
antenna in our simulation is almost the same as in the
experiment, except for the imperfection of the fabricated
sample and the very thin (∼3 nm) adhesion layer below Au
particles.

045408-2



ELECTRON-PHOTON SCATTERING MEDIATED BY . . . PHYSICAL REVIEW B 89, 045408 (2014)

2.4 2.2 2 1.8 1.6

d e m o d e m o d e m o d e m o

d e m o d e m o d e m o d e m o

d e m o d e m o d e m o d e m o

d e m o d e m o d e m o d e m o

d e m o d e m o d e m o d e m o

d e m o d e m o d e m o d e m o

d e m o d e m o d e m o d e m o

d e m o d e m o d e m o d e m o
+
+

−

−

+
−

−
+

+
+

−

−

−
+
+

−

−
−

+

+

− +

−

+

++

−

−

Gap
Corner

Edge

Triangle

Gap

Corner

Edge

Triangle

Photon Energy (eV)(a) (b)

500 550 600 650 700 750
0.0

0.2

0.4

  Gap
  Corner
  Edge
  Triangle

E
m

is
si

o
n
 P

ro
b
a
b
ili

ty
 (

a
.u

.)

Wavelength (nm)

FIG. 2. (Color online) Numerical results on the scattering interaction strength between a 30 keV electron and a photon. (a) The rounded
bowtie structure used in numerical simulations. Each Au particle is lifted away from the substrate by a 85 nm thick SiO2 layer of the same shape.
(b) Solid lines display the photon emission spectra for bowtie nanoantenna, which indicate the scattering interaction strength. Dash-dotted line
displays the spectrum for single triangle. The diagrams next to spectral peaks indicate the position of electron beams and the corresponding
plasmon modes excited by the beam. Colored plots on the right show the field patterns on a plane that is 2 nm above the surface of the
nanoantennas. The color indicates the electric field normal to the monitored plane, which can approximately represent the surface charge
density.

A. FDTD simulations

Figure 2(a) shows a schematic of the problem we consider.
Electron beam is modeled in FDTD simulation as a moving
point charge. Details of the simulation method can be found
in Appendix D and elsewhere [30]. To match the fabricated
sample, all corner and edges in the model structure have a
rounding radius of 15 nm (see Supplemental Material [31]).
We simulate and measure the photon emission for different
fixed e-beam locations, which indicates the strength of the
scattering interaction between electron beam and photon.
Simulation results in Fig. 2(b) show that there is a dominant
peak associated with each fixed e-beam. When the e-beam
is fixed at the center (gap), right upper corner, and right
edge of the bowtie antenna, we observe a peak at ∼600 nm,
620 nm, and 680 nm, respectively. We see that there are at
least three different plasmon modes supported by the bowtie
antenna. This is consistent with our prediction that four
resonant modes are supported while two of the modes are
almost degenerate such that they can hardly be distinguished.
To further verify our theory and understand the peaks, we
also simulate the case of single nanotriangle [dashed line
in Fig. 2(b)]. Such a peak wavelength corresponds to the
dipole resonance of single nanotriangle, while the peaks for
gap, edge, and corner excitations correspond to antiparallel
horizontal dipoles, parallel horizontal dipoles, and vertical
dipoles, respectively. The above classification of peaks is
verified by simulating the field patterns at the corresponding
peaks in Fig. 2(b). The right colored panels in Fig. 2 show
the z component of the electric field at a plane located 2 nm
above the surface of the bowtie nanoantenna for the three
dominant peaks. These patterns can approximately represent
the surface charge density. We see that, when fixing e-beam at
the central gap and observing the field pattern at the wavelength
of 600 nm, the distribution of the induced charges is symmetric
in x-direction, which represents a pair of antiparallel dipoles.
For edge excitation at 680 nm, the induced charges show an

almost antisymmetric distribution except the field produced
by the e-beam itself near the right edge. For corner excitation
at 620 nm, the induced charges show a pair of antiparallel
vertical dipoles. This agrees with our theory that the vertical
modes have wavelengths very close to the single triangle case.
Apart from the dominant peak positions, we also see some
small features at shorter wavelengths, which may correspond
to higher order modes.

Here, we briefly discuss why both dark and bright modes
can be selectively excited and analyzed in the far field with
strong signals. When we fix the e-beam at the center of the gap,
the excitation field produced by the e-beam has an azimuthal
symmetry with respect to the center of the bowtie. Therefore,
only the plasmon with charge distribution symmetric in both
directions can be excited (〈PD|Eexc〉 �= 0 and 〈PB |Eexc〉 = 0)
and this leads to a pure excitation of horizontal antiparallel
dipole mode, which has the shortest wavelength among the
three observable peaks. When the e-beam is fixed at the
edge, a mirror symmetry is broken and the excitation of the
horizontal parallel dipole mode is possible (〈PD|Eexc〉 �= 0 and
〈PB |Eexc〉 �= 0). Since the e-beam is far away from the center
of bowtie nanoantenna, it is more favorable to the excitation of
horizontal parallel mode, which leads to a peak at the longest
wavelength. Details of how each mode contributes to the total
signal is illustrated in Appendix C. Similarly, in the case of
e-beam fixed at the corner, the vertical in-plane dipole modes
can be excited due to the broken mirror symmetry of the source
in the y-direction.

To further demonstrate the roles of projected magnitudes
〈Pj |Eexc〉, we repeat the simulation by changing the position
of the electron beam from the gap to the edge. The results in
Fig. 3 show the peak positions for different e-beam excitation
locations are the same except the strength of signal, indicating
a gradual change in projection magnitude from domination of
anti-parallel mode to parallel mode (from “i” to “iv”). We see
that there is no component of parallel mode contributing to
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FIG. 3. (Color online) Simulated results verifying projection
magnitudes of the excitation to bright and dark modes. The locations
of electron beam are shown in the inset. When the electron beam is
fixed at i, only the horizontal anti-parallel dipole modes can be excited
(i.e., 〈PD|Eexc〉 �= 0 and 〈PB |Eexc〉 = 0), which leads to a single peak
close to 600 nm. As we move the electron beam from i to iv, the
horizontal parallel dipole modes (∼680 nm) contribute more to the
projection magnitude 〈PB |Eexc〉 �= 0.

the response when the e-beam is located at the gap and the
radiation from the antiparallel mode is thus the only dominant
mode observed. It should be emphasized that the signal for
position “i” is even higher than that of the parallel mode for
position “iv,” indicating a strong interaction between electron
beam and photon. This is also observed in our experimental
results in Sec. III B.

B. CL experiments

The gold bowtie nanoantenna was fabricated using electron-
beam lithography on a multilayered substrate with minimal
background luminescence and relatively low substrate in-
dex [32]. In our CL experiment, an aluminum parabolic mirror,
with a small hole for electron beam, was placed on top of
the sample for collecting the photons emitted by the antenna
irradiated with an electron beam accelerated at 30 kV and 20
nA current. The collected photons were directed into a Mach-
Czerny type monochromator to collect spectral information
and imaging. Experimental setup have been previously pub-
lished with details [30,32] (see Supplemental Material [33]).
Our experimental results (Fig. 4) show the strong scattering
interaction mediated by the dark plasmon, which agrees very
much with our theory. An SEM picture of the fabricated bowtie
nanoantenna is shown in Fig. 4(a). We observed three peaks
for center (gap), corner, and edge excitations, indicated in the
same SEM picture as blue, black, and red dots, respectively.
The observation of the three modes is consistent with a
previous related experiment [23]. The results [Fig. 4(b)] also
agree well with the simulation results in terms of the number
of peaks and relative peak positions, except the separation
between peaks are larger in the experiment. The obtained
peak wavelengths for center, corner, and edge excitations are,
respectively, 600 nm, 650 nm, and 740 nm. We believe that the
discrepancy from simulation results can be due to the detailed
material and geometrical properties. The panchromatic CL
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FIG. 4. (Color online) Experimentally measured scattering inter-
action strength at different selected locations. (a) SEM picture of a
fabricated bowtie antenna. (b) Measured CL spectra at three locations
indicated as colored dots in (c). Panchromatic spatial image collected
for the whole spectrum detected by the photodetector. Bright color
corresponds to high photon counts.

image [Fig. 4(c)] also indicates that the edge excitation gives
a weak signal and even the bright mode is excited.

IV. CONCLUSION

To conclude, we introduced a nontrivially strong electron-
photon scattering interaction enhanced by dark plasmon
modes. Our theory predicts that even though dark plasmon
mode couples weakly with photon, it can strongly enhance the
scattering interaction between a high energy electron and a
photon. Our simulation and experiment strongly support the
theoretical predictions. The discovery may offer opportunities
for improving single-plasmon generation and detection in
nanostructures. Our study also provides insights for developing
high-resolution characterization techniques for high quality
plasmonic materials. The phenomenon presented in this paper
is explained by a classical model. It would be interesting to
study the quantum interaction in the future.
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APPENDIX A: DEGENERACY IN AN EQUILATERAL
NANOTRIANGLE

Consider that an equilateral nanotriangle is driven by an
external electric field Einc = Einc

x x̂ + Einc
y ŷ. We first suppose

a single nanotriangle has different dipole polarizabilities for
different in-plane polarizations (along x and y axes). The
response dipole, p = px x̂ + py ŷ, is given by

(
px

py

)
=

(
αx 0

0 αy

) (
Einc

x

Einc
y

)
, (A1)

where px and py are the dipole moments of the nanoparticles
in x and y directions, respectively. The polarizability tensor
has only diagonal elements because the x and y polarization
are decoupled due to a mirror symmetry along one of the
axes. In addition, due to the threefold rotational symmetry, the
polarizability tensor is preserved under 120◦ rotation:

(
cos 2π

3 − sin 2π
3

sin 2π
3 cos 2π

3

)(
αx 0

0 αy

)(
cos 2π

3 sin 2π
3

− sin 2π
3 cos 2π

3

)

=
(

αx 0

0 αy

)
, (A2)

which gives

(
−√

3αx + √
3αy −αx + αy

−αx + αy

√
3αx − √

3αy

)
= 0, (A3)

which implies αx = αy and, therefore, the two in-plane dipole
modes are degenerate. It should be noted that the degeneracy is
guaranteed when we have N -fold rotational symmetry, where
N � 3. This can be proved in a way similar to Ref. [34].

APPENDIX B: CALCULATION OF THE PROJECTION
MAGNITUDE FOR ELECTRON BEAM EXCITATION

In our eigen-response theory, the electron beam is modeled
as a moving point charge:

Pexc(r) = −iωJ(r)

= iωev

∫
eiωt δ(3)(r − r0 − vt)dt ẑ

= iω eδ(x − x0,y − y0)eiωz/v ẑ, (B1)

where (x0,y0) is the position of the electron beam. For
simplicity, we evaluate the projection amplitude 〈Peig|Eexc〉
using the reciprocity theorem. The partial projection amplitude
is thus given by 〈Peig|Eexc〉 = 〈Pexc|Eeig〉 = I1 + I2, where
Eeig is the field produced by the eigenmode and I1 and I2 are
the integrals for the first and the second metal nanoparticles,
respectively. For x-polarized eigenmodes, the field gener-
ated by one particle on an e-beam with y0 = 0 is simply
given by

Eeig,1(z)

= k3
0px

⎛
⎝A(k0

√
d2 + z2) + B(k0

√
d2 + z2)

0
B(k0

√
d2 + z2) zd

d2+z2

⎞
⎠ , (B2)

where k0 = ω/c, c is the speed of light in vacuum,
d = x0 − xd , xd is the x position of dipole in one
nanoparticle, A(x) = (x−1 + ix−2 − x−3)eix , and B(x) =
(−x−1 − 3ix−2 + 3x−3)eix . Therefore, we get

I1 = iωpxek
3
0d

∫ ∞

−∞

z

d2 + z2
B(k0

√
d2 + z2)eiωz/vdz. (B3)

I2 can be obtained in a way similar to Eq. (B3) by using the
correct displacement d.

FIG. 5. (Color online) Decomposed interaction strength between electron beam and photon as a function of angle θ . Units are arbitrary.
The calculation predicts that the interaction strength mediated by dark plasmon can be higher than that of the bright plasmon mode.
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APPENDIX C: CONTRIBUTION OF EACH MODE TO
THE TOTAL STRENGTH

Here, we evaluate the interaction strength between the
electron beam and a plane wave propagating in single direction,
denoted as |k〉. We evaluate the following three quantities.

(1) The interaction strength for each pure eigenmode,
|〈k|Pj 〉|.

(2) The interaction strength for each pure eigen-
mode multiplied by the corresponding eigen-polarizability,
|αeig,j 〈k|Pj 〉|.

(3) The contribution of each eigenmode to the overall
interaction strength, |αeig,j 〈k|Pj 〉〈Pj |Eext〉|.

Figure 5 shows that the projection plays the most important
role in the final interaction strength.

APPENDIX D: MODELING OF ELECTRON BEAM

The electron beam is modeled as a moving point charge.
We assume that the velocity of the electron (≈0.33c) is high
enough so that its velocity does not change significantly at
the time when it is close to the bowtie nanoantenna. In this
case, the moving point charge can be considered as a chain of
dipoles after discretization in simulation:

p(zm,t) = q�z

2
sgn(zm/v − t)ẑ. (D1)

This is equivalent to a point charge moving at a velocity v

in the z direction when the dipole chain is long enough and

the dipoles are dense enough (with �z → 0). In the frequency
domain, the dipoles can be written as

p(zm,ω) =
∫

p(zm,t)eiωtdt = q�z

iω
eiωzm/v ẑ. (D2)

Instead of using the time-domain sources in Eq. (D1), we do a
FDTD simulation [35] for our target structure with other time-
domain sources, p̃(zm,t) = 1

2π

∫
p̃(zm,ω)e−iωtdω, in which

the sources in the frequency domain are renormalized with

p̃(zm,ω) = iωs(ω)p(zm,ω) = q�zs(ω)eiωzm/v ẑ, (D3)

where

s(ω) =
∫

sin[ω0(t − t0)] exp

(
iωt − (t − t0)2

2(�t)2

)
dt (D4)

and ω0 is the pulse central frequency. The simulated CL
signals are then obtained by measuring the power flow
through a plane above the nanostructure. By redoing the
normalizations back to the original model [Eq. (D1)], we
obtained the spectral power for the dipole sources written
in Eq. (D2). Since the experimental uses a uniform spectral
window in wavelength instead of frequency, we further
convert the numerically obtained spectral power per unit
frequency to a spectral power per unit wavelength.
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(2011).

[4] P. Berini and I. De Leon, Nat. Photon. 6, 16
(2012).

[5] D. J. Bergman and M. I. Stockman, Phys. Rev. Lett. 90, 027402
(2003).

[6] M. T. Hill et al., Opt. Express 17, 11107 (2009).
[7] M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M.

Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and
U. Wiesner, Nature (London) 460, 1110 (2009).

[8] R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden,
L. Dai, G. Bartal, and X. Zhang, Nature (London) 461, 629
(2009).

[9] N. W. Bigelow, A. Vaschillo, V. Iberi, J. P. Camden, and D. J.
Masiello, ACS Nano 6, 7497 (2012).

[10] M. I. Stockman, S. V. Faleev, and D. J. Bergman, Phys. Rev.
Lett. 87, 167401 (2001).

[11] V. A. Markel, J. Opt. Soc. Am. B 12, 1783 (1995).
[12] H. Benisty, J. Opt. Soc. Am. B 26, 718 (2009).
[13] U. Fano, Phys. Rev. 124, 1866 (1961).
[14] B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas,

P. Nordlander, H. Giessen, and C. T. Chong, Nat. Mater. 9,
707 (2010).

[15] V. Giannini, A. I. Fernández-Domı́nguez, Y. Sonnefraud,
T. Roschuk, R. Fernández-Garcı́a, and S. A. Maier, Small 6,
2498 (2010).

[16] S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, Phys.
Rev. Lett. 101, 047401 (2008).

[17] N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer,
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