64 research outputs found

    RNF168 E3 ligase participates in ubiquitin signaling and recruitment of SLX4 during DNA crosslink repair

    Get PDF
    遺伝性血液疾患の原因タンパク質を制御する新規のユビキチン経路を解明 --ファンコニ貧血にかかわる新たな関連因子群の同定--. 京都大学プレスリリース. 2021-10-28.SLX4/FANCP is a key Fanconi anemia (FA) protein and a DNA repair scaffold for incision around a DNA interstrand crosslink (ICL) by its partner XPF nuclease. The tandem UBZ4 ubiquitin-binding domains of SLX4 are critical for the recruitment of SLX4 to damage sites, likely by binding to K63-linked polyubiquitin chains. However, the identity of the ubiquitin E3 ligase that mediates SLX4 recruitment remains unknown. Using small interfering RNA (siRNA) screening with a GFP-tagged N-terminal half of SLX4 (termed SLX4-N), we identify the RNF168 E3 ligase as a critical factor for mitomycin C (MMC)-induced SLX4 foci formation. RNF168 and GFP-SLX4-N colocalize in MMC-induced ubiquitin foci. Accumulation of SLX4-N at psoralen-laser ICL tracks or of endogenous SLX4 at Digoxigenin-psoralen/UVA ICL is dependent on RNF168. Finally, we find that RNF168 is epistatic with SLX4 in promoting MMC tolerance. We conclude that RNF168 is a critical component of the signal transduction that recruits SLX4 to ICL damage

    Peripheral Blood as a Preferable Source of Stem Cells for Salvage Transplantation in Patients with Graft Failure after Cord Blood Transplantation: A Retrospective Analysis of the Registry Data of the Japanese Society for Hematopoietic Cell Transplantation

    Get PDF
    To compare the different stem cell sources used in salvage transplantation for graft failure (GF) after cord blood transplantation (CBT), we retrospectively analyzed data of 220 patients who developed GF after undergoing CBT between January 2001 and December 2007 and underwent a second hematopoietic stem cell transplantation (HSCT) within 3 months. The donor sources for salvage HSCT were cord blood (n = 180), peripheral blood stem cells (PBSCs; n = 24), and bone marrow (BM; n = 16). The cumulative incidence of neutrophil engraftment on day 30 after the second HSCT was 39% with CB, 71% with PBSCs, and 75% with BM. Multivariate analysis revealed that PBSC and BM grafts were associated with a significantly higher engraftment rate than CB (hazard ratio [HR], 7.77; P < .001 and HR, 2.81; P = .016, respectively). Although the incidence of grade II-IV acute graft-versus-host disease was significantly higher in the PBSC group than in the CB group (HR, 2.83; P = .011), the incidence of 1-year nonrelapse mortality was lower in the PBSC group than in the CB group (HR, 0.43; P = .019), and 1-year overall survival was superior in the PBSC group compared with the CB group (HR, 0.45; P = .036). Our results suggest that PBSC is the preferable source of stem cells in salvage HSCT for GF after CBT

    Co-activation of macrophages and T cells contribute to chronic GVHD in human IL-6 transgenic humanised mouse model.

    Get PDF
    BACKGROUND: Graft-versus host disease (GVHD) is a complication of stem cell transplantation associated with significant morbidity and mortality. Non-specific immune-suppression, the mainstay of treatment, may result in immune-surveillance dysfunction and disease recurrence. METHODS: We created humanised mice model for chronic GVHD (cGVHD) by injecting cord blood (CB)-derived human CD34 FINDINGS: In cGVHD humanised mice, we found activation of T cells in the spleen, lung, liver, and skin, activation of macrophages in lung and liver, and loss of appendages in skin, obstruction of bronchioles in lung and portal fibrosis in liver recapitulating cGVHD. Acute GVHD humanised mice showed activation of T cells with skewed TCR repertoire without significant macrophage activation. INTERPRETATION: Using humanised mouse models, we demonstrated distinct immune mechanisms contributing acute and chronic GVHD. In cGVHD model, co-activation of human HSPC-derived macrophages and T cells educated in the recipient thymus contributed to delayed onset, multi-organ disease. In acute GVHD model, mature human T cells contained in the graft resulted in rapid disease progression. These humanised mouse models may facilitate future development of new molecular medicine targeting GVHD

    Two Aldehyde Clearance Systems Are Essential to Prevent Lethal Formaldehyde Accumulation in Mice and Humans.

    Get PDF
    Reactive aldehydes arise as by-products of metabolism and are normally cleared by multiple families of enzymes. We find that mice lacking two aldehyde detoxifying enzymes, mitochondrial ALDH2 and cytoplasmic ADH5, have greatly shortened lifespans and develop leukemia. Hematopoiesis is disrupted profoundly, with a reduction of hematopoietic stem cells and common lymphoid progenitors causing a severely depleted acquired immune system. We show that formaldehyde is a common substrate of ALDH2 and ADH5 and establish methods to quantify elevated blood formaldehyde and formaldehyde-DNA adducts in tissues. Bone-marrow-derived progenitors actively engage DNA repair but also imprint a formaldehyde-driven mutation signature similar to aging-associated human cancer mutation signatures. Furthermore, we identify analogous genetic defects in children causing a previously uncharacterized inherited bone marrow failure and pre-leukemic syndrome. Endogenous formaldehyde clearance alone is therefore critical for hematopoiesis and in limiting mutagenesis in somatic tissues

    Human AK2 links intracellular bioenergetic redistribution to the fate of hematopoietic progenitors

    Get PDF
    AK2 is an adenylate phosphotransferase that localizes at the intermembrane spaces of the mitochondria, and its mutations cause a severe combined immunodeficiency with neutrophil maturation arrest named reticular dysgenesis (RD). Although the dysfunction of hematopoietic stem cells (HSCs) has been implicated, earlier developmental events that affect the fate of HSCs and/or hematopoietic progenitors have not been reported. Here, we used RD-patient-derived induced pluripotent stem cells (iPSCs) as a model of AK2-deficient human cells. Hematopoietic differentiation from RD-iPSCs was profoundly impaired. RD-iPSC-derived hemoangiogenic progenitor cells (HAPCs) showed decreased ATP distribution in the nucleus and altered global transcriptional profiles. Thus, AK2 has a stage-specific role in maintaining the ATP supply to the nucleus during hematopoietic differentiation, which affects the transcriptional profiles necessary for controlling the fate of multipotential HAPCs. Our data suggest that maintaining the appropriate energy level of each organelle by the intracellular redistribution of ATP is important for controlling the fate of progenitor cells

    Human NK cell development in hIL-7 and hIL-15 knockin NOD/SCID/IL2rgKO mice.

    Get PDF
    The immune system encompasses acquired and innate immunity that matures through interaction with microenvironmental components. Cytokines serve as environmental factors that foster functional maturation of immune cells. Although NOD/SCID/IL2rgKO (NSG) humanized mice support investigation of human immunity in vivo, a species barrier between human immune cells and the mouse microenvironment limits human acquired as well as innate immune function. To study the roles of human cytokines in human acquired and innate immune cell development, we created NSG mice expressing hIL-7 and hIL-15. Although hIL-7 alone was not sufficient for supporting human NK cell development in vivo, increased frequencies of human NK cells were confirmed in multiple organs of hIL-7 and hIL-15 double knockin (hIL-7xhIL-15 KI) NSG mice engrafted with human hematopoietic stem cells. hIL-7xhIL-15 KI NSG humanized mice provide a valuable in vivo model to investigate development and function of human NK cells

    Outcomes of patients who developed subsequent solid cancer after hematopoietic cell transplantation

    Get PDF
    To characterize the outcomes of patients who developed a particular subsequent solid cancer after hematopoietic cell transplantation (HCT), age at cancer diagnosis, survival, and causes of death were compared with the respective primary cancer in the general population, using data from the national HCT registry and population-based cancer registries in Japan. Among 31 867 patients who underwent a first HCT between 1990 and 2013 and had progression-free survival at 1 year, 713 patients developed subsequent solid cancer. The median age at subsequent solid cancer diagnosis was 55 years, which was significantly younger than the 67 years for primary cancer patients in the general population (P < .001). The overall survival probability was 60% at 3 years after diagnosis of subsequent solid cancer and differed according to cancer type. Development of most solid cancers was associated with an increased risk of subsequent mortality after HCT. Subsequent solid cancers accounted for 76% of causes of death. Overall survival probabilities adjusted for age, sex, and year of diagnosis were lower in the HCT population than in the general population for colon, bone/soft tissue, and central nervous system cancers and did not differ statistically for other cancers. In conclusion, most subsequent solid cancers occurred at younger ages than primary cancers, emphasizing the need for cancer screening at younger ages. Subsequent solid cancers showed similar or worse survival compared with primary cancers. Biological and genetic differences between primary and subsequent solid cancers remain to be determined

    Hydrogen absorption properties of the γ-Mg17Al12 phase

    No full text

    High power bi-materials for actuators

    No full text
    Six kinds of new actuator materials such as Fe-Pd alloy film, hydrogen storage alloy film, hydrogen storage bi-polymer, polymer-metal bi-metal, glass-crystal bi-metal and bi-ceramics glass were developed. The powers of these actuator bi-materials, Fe-Pd alloy film and hydrogen storage alloy film, were larger than that of Ni-Ti alloy commercially used

    Chemical Composition Dependence of Magnetostrictive Properties of Fe-Pd Alloy Films

    No full text
    corecore