134 research outputs found

    Exponential speed of mixing for skew-products with singularities

    Full text link
    Let f:[0,1]×[0,1]∖1/2→[0,1]×[0,1]f: [0,1]\times [0,1] \setminus {1/2} \to [0,1]\times [0,1] be the C∞C^\infty endomorphism given by f(x,y)=(2x−[2x],y+c/∣x−1/2∣−[y+c/∣x−1/2∣]),f(x,y)=(2x- [2x], y+ c/|x-1/2|- [y+ c/|x-1/2|]), where cc is a positive real number. We prove that ff is topologically mixing and if c>1/4c>1/4 then ff is mixing with respect to Lebesgue measure. Furthermore we prove that the speed of mixing is exponential.Comment: 23 pages, 3 figure

    Stable regimes for hard disks in a channel with twisting walls

    Get PDF
    We study a gas of NN hard disks in a box with semi-periodic boundary conditions. The unperturbed gas is hyperbolic and ergodic (these facts are proved for N=2 and expected to be true for all N≥2N\geq 2). We study various perturbations by twisting the outgoing velocity at collisions with the walls. We show that the dynamics tends to collapse to various stable regimes, however we define the perturbations and however small they are.Comment: 30 pages, final version to appear in "Chaos

    Billiards with polynomial mixing rates

    Full text link
    While many dynamical systems of mechanical origin, in particular billiards, are strongly chaotic -- enjoy exponential mixing, the rates of mixing in many other models are slow (algebraic, or polynomial). The dynamics in the latter are intermittent between regular and chaotic, which makes them particularly interesting in physical studies. However, mathematical methods for the analysis of systems with slow mixing rates were developed just recently and are still difficult to apply to realistic models. Here we reduce those methods to a practical scheme that allows us to obtain a nearly optimal bound on mixing rates. We demonstrate how the method works by applying it to several classes of chaotic billiards with slow mixing as well as discuss a few examples where the method, in its present form, fails.Comment: 39pages, 11 figue

    Deterministic Walks in Quenched Random Environments of Chaotic Maps

    Full text link
    This paper concerns the propagation of particles through a quenched random medium. In the one- and two-dimensional models considered, the local dynamics is given by expanding circle maps and hyperbolic toral automorphisms, respectively. The particle motion in both models is chaotic and found to fluctuate about a linear drift. In the proper scaling limit, the cumulative distribution function of the fluctuations converges to a Gaussian one with system dependent variance while the density function shows no convergence to any function. We have verified our analytical results using extreme precision numerical computations.Comment: 18 pages, 9 figure

    A simple piston problem in one dimension

    Full text link
    We study a heavy piston that separates finitely many ideal gas particles moving inside a one-dimensional gas chamber. Using averaging techniques, we prove precise rates of convergence of the actual motions of the piston to its averaged behavior. The convergence is uniform over all initial conditions in a compact set. The results extend earlier work by Sinai and Neishtadt, who determined that the averaged behavior is periodic oscillation. In addition, we investigate the piston system when the particle interactions have been smoothed. The convergence to the averaged behavior again takes place uniformly, both over initial conditions and over the amount of smoothing.Comment: Accepted by Nonlinearity. 27 pages, 2 figure

    Proving The Ergodic Hypothesis for Billiards With Disjoint Cylindric Scatterers

    Full text link
    In this paper we study the ergodic properties of mathematical billiards describing the uniform motion of a point in a flat torus from which finitely many, pairwise disjoint, tubular neighborhoods of translated subtori (the so called cylindric scatterers) have been removed. We prove that every such system is ergodic (actually, a Bernoulli flow), unless a simple geometric obstacle for the ergodicity is present.Comment: 24 pages, AMS-TeX fil

    Evolution of collision numbers for a chaotic gas dynamics

    Full text link
    We put forward a conjecture of recurrence for a gas of hard spheres that collide elastically in a finite volume. The dynamics consists of a sequence of instantaneous binary collisions. We study how the numbers of collisions of different pairs of particles grow as functions of time. We observe that these numbers can be represented as a time-integral of a function on the phase space. Assuming the results of the ergodic theory apply, we describe the evolution of the numbers by an effective Langevin dynamics. We use the facts that hold for these dynamics with probability one, in order to establish properties of a single trajectory of the system. We find that for any triplet of particles there will be an infinite sequence of moments of time, when the numbers of collisions of all three different pairs of the triplet will be equal. Moreover, any value of difference of collision numbers of pairs in the triplet will repeat indefinitely. On the other hand, for larger number of pairs there is but a finite number of repetitions. Thus the ergodic theory produces a limitation on the dynamics.Comment: 4 pages, published versio

    Oseledets' Splitting of Standard-like Maps

    Get PDF
    For the class of differentiable maps of the plane and, in particular, for standard-like maps (McMillan form), a simple relation is shown between the directions of the local invariant manifolds of a generic point and its contribution to the finite-time Lyapunov exponents (FTLE) of the associated orbit. By computing also the point-wise curvature of the manifolds, we produce a comparative study between local Lyapunov exponent, manifold's curvature and splitting angle between stable/unstable manifolds. Interestingly, the analysis of the Chirikov-Taylor standard map suggests that the positive contributions to the FTLE average mostly come from points of the orbit where the structure of the manifolds is locally hyperbolic: where the manifolds are flat and transversal, the one-step exponent is predominantly positive and large; this behaviour is intended in a purely statistical sense, since it exhibits large deviations. Such phenomenon can be understood by analytic arguments which, as a by-product, also suggest an explicit way to point-wise approximate the splitting.Comment: 17 pages, 11 figure
    • …
    corecore