We study a heavy piston that separates finitely many ideal gas particles
moving inside a one-dimensional gas chamber. Using averaging techniques, we
prove precise rates of convergence of the actual motions of the piston to its
averaged behavior. The convergence is uniform over all initial conditions in a
compact set. The results extend earlier work by Sinai and Neishtadt, who
determined that the averaged behavior is periodic oscillation. In addition, we
investigate the piston system when the particle interactions have been
smoothed. The convergence to the averaged behavior again takes place uniformly,
both over initial conditions and over the amount of smoothing.Comment: Accepted by Nonlinearity. 27 pages, 2 figure