17 research outputs found

    Lifetime of metastable states in resonant tunneling structures

    Full text link
    We investigate the transport of electrons through a double-barrier resonant-tunneling structure in the regime where the current-voltage characteristics exhibit bistability. In this regime one of the states is metastable, and the system eventually switches from it to the stable state. We show that the mean switching time grows exponentially as the voltage across the device is tuned from the its boundary value into the bistable region. In samples of small area we find that the logarithm of the lifetime is proportional to the voltage (measured from its boundary value) to the 3/2 power, while in larger samples the logarithm of the lifetime is linearly proportional to the voltage.Comment: REVTeX 4, 5 pages, 3 EPS-figure

    Tunneling decay in a magnetic field

    Full text link
    We provide a semiclassical theory of tunneling decay in a magnetic field and a three-dimensional potential of a general form. Because of broken time-reversal symmetry, the standard WKB technique has to be modified. The decay rate is found from the analysis of the set of the particle Hamiltonian trajectories in complex phase space and time. In a magnetic field, the tunneling particle comes out from the barrier with a finite velocity and behind the boundary of the classically allowed region. The exit location is obtained by matching the decaying and outgoing WKB waves at a caustic in complex configuration space. Different branches of the WKB wave function match on the switching surface in real space, where the slope of the wave function sharply changes. The theory is not limited to tunneling from potential wells which are parabolic near the minimum. For parabolic wells, we provide a bounce-type formulation in a magnetic field. The theory is applied to specific models which are relevant to tunneling from correlated two-dimensional electron systems in a magnetic field parallel to the electron layer.Comment: 16 pages, 11 figure

    Enhancement of tunneling from a correlated 2D electron system by a many-electron Mossbauer-type recoil in a magnetic field

    Full text link
    We consider the effect of electron correlations on tunneling from a 2D electron layer in a magnetic field parallel to the layer. A tunneling electron can exchange its momentum with other electrons, which leads to an exponential increase of the tunneling rate compared to the single-electron approximation. Explicit results are obtained for a Wigner crystal. They provide a qualitative and quantitative explanation of the data on electrons on helium. We also discuss tunneling in semiconductor heterostructures.Comment: published version, 4 pages, 2 figures, RevTeX 3.

    Tunneling transverse to a magnetic field, and how it occurs in correlated 2D electron systems

    Full text link
    We investigate tunneling decay in a magnetic field. Because of broken time-reversal symmetry, the standard WKB technique does not apply. The decay rate and the outcoming wave packet are found from the analysis of the set of the particle Hamiltonian trajectories and its singularities in complex space. The results are applied to tunneling from a strongly correlated 2D electron system in a magnetic field parallel to the layer. We show in a simple model that electron correlations exponentially strongly affect the tunneling rate.Comment: 4 pages, 3 figure

    Ratchet driven by quasimonochromatic noise.

    Get PDF
    The currents generated by noise-induced activation processes in a periodic potential are investigated analytically, by digital simulation and by performing analog experiments. The noise is taken to be quasimonochromatic and the potential to be a smoothed sawtooth. Two analytic approaches are studied. The first involves a perturbative expansion in inverse powers of the frequency characterizing quasimonochromatic noise and the second is a direct numerical integration of the deterministic differential equations obtained in the limit of weak noise. These results, together with the digital and analog experiments, show that the system does indeed give rise, in general, to a net transport of particles. All techniques also show that a current reversal exists for a particular value of the noise parameters
    corecore