We consider the effect of electron correlations on tunneling from a 2D
electron layer in a magnetic field parallel to the layer. A tunneling electron
can exchange its momentum with other electrons, which leads to an exponential
increase of the tunneling rate compared to the single-electron approximation.
Explicit results are obtained for a Wigner crystal. They provide a qualitative
and quantitative explanation of the data on electrons on helium. We also
discuss tunneling in semiconductor heterostructures.Comment: published version, 4 pages, 2 figures, RevTeX 3.