982 research outputs found

    Corrected score methods for estimating Bayesian networks with error-prone nodes

    Full text link
    Motivated by inferring cellular signaling networks using noisy flow cytometry data, we develop procedures to draw inference for Bayesian networks based on error-prone data. Two methods for inferring causal relationships between nodes in a network are proposed based on penalized estimation methods that account for measurement error and encourage sparsity. We discuss consistency of the proposed network estimators and develop an approach for selecting the tuning parameter in the penalized estimation methods. Empirical studies are carried out to compare the proposed methods and a naive method that ignores measurement error with applications to synthetic data and to single cell flow cytometry data

    REAP: A two minute cell fractionation method

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The translocation or shuttling of proteins between the nucleus and cytoplasm (nucleocytoplasmic transport [NCPT]) is often a rapid event following stimulation with growth factors or in response to stress or other experimental manipulations. Commonly used methods to separate nuclei from cytoplasm employ lengthy steps such as density gradient centrifugation which exposes cells to non-physiological hyperosmotic conditions for extended time periods resulting in varying degrees of leakage between the nucleus and cytoplasm. To help maintain and quantify nuclear:cytoplasmic ratios of proteins, agents such as leptomycin B have been employed to be able to better analyze NCPT by inhibiting nuclear export. To track NCPT in the absence of these experimental manipulations that could introduce unknown artefacts, we have developed a rapid method that appears to produce pure nuclear and cytoplasmic fractions, suitable for obtaining accurate estimates of the nuclear:cytoplasmic ratios of proteins known to undergo NCPT.</p> <p>Findings</p> <p>We have developed a <b>R</b>apid, <b>E</b>fficient <b>A</b>nd <b>P</b>ractical (<b>REAP</b>) method for subcellular fractionation of primary and transformed human cells in culture. The REAP method is a two minute non-ionic detergent-based purification technique requiring only a table top centrifuge, micro-pipette and micro-centrifuge tubes. This inexpensive method has proven to efficiently separate nuclear from cytoplasmic proteins as estimated by no detectible cross-contamination of the nucleoporin and lamin A nuclear markers or the pyruvate kinase and tubulin cytoplasmic markers. REAP fractions also mirrored TNFα induced NF-κB NCPT observed in parallel by indirect immunofluorescence.</p> <p>Conclusions</p> <p>This method drastically reduces the time needed for subcellular fractionation, eliminates detectable protein degradation and maintains protein interactions. The simplicity, brevity and efficiency of this procedure allows for tracking ephemeral changes in subcellular relocalization of proteins while maintaining protein integrity and protein complex interactions.</p

    CNx-modified Fe3O4 as Pt nanoparticle support for the oxygen reduction reaction

    Get PDF
    A novel electrocatalyst support material, nitrogendoped carbon (CNx)-modified Fe3O4 (Fe3O4-CNx), was synthesized through carbonizing a polypyrrole-Fe3O4 hybridized precursor. Subsequently, Fe3O4-CNx-supported Pt (Pt/Fe3O4-CNx) nanocomposites were prepared by reducing Pt precursor in ethylene glycol solution and evaluated for the oxygen reduction reaction (ORR). The Pt/Fe3O4-CNx catalysts were characterized by X-ray diffraction, Raman spectra, X-ray photoelectron spectroscopy, scanning electron microscopy, and transmission electron microscopy. The electrocatalytic activity and stability of the as-prepared electrocatalysts toward ORR were studied by cyclic voltammetry and steady-state polarization measurements. The results showed that Pt/ Fe3O4-CNx catalysts exhibited superior catalytic performance for ORR to the conventional Pt/C and Pt/C-CNx catalysts.Web of Scienc

    RNA Captor: A Tool for RNA Characterization

    Get PDF
    Background: In the genome era, characterizing the structure and the function of RNA molecules remains a major challenge. Alternative transcripts and non-protein-coding genes are poorly recognized by the current genome-annotation algorithms and efficient tools are needed to isolate the less-abundant or stable RNAs. Results: A universal RNA-tagging method using the T4 RNA ligase 2 and special adapters is reported. Based on this system, protocols for RACE PCR and full-length cDNA library construction have been developed. The RNA tagging conditions were thoroughly optimized and compared to previous methods by using a biochemical oligonucleotide tagging assay and RACE PCRs on a range of transcripts. In addition, two large-scale full-length cDNA inventories relying on this method are presented. Conclusion: The RNA Captor is a straightforward and accessible protocol. The sensitivity of this approach was shown to be higher compared to previous methods, and applicable on messenger RNAs, non-protein-coding RNAs, transcription-start sites and microRNA-directed cleavage sites of transcripts. This strategy could also be used to study other classes of RNA and in deep sequencing experiments

    Construction and analysis of full-length and normalized cDNA libraries from citrus

    Full text link
    [EN] We have developed an integrated method to generate a normalized cDNA collection enriched in full-length and rare transcripts from citrus, using different species and multiple tissues and developmental stages. Interpretation of ever-increasing raw sequence information generated by modern genome sequencing technologies faces multiple challenges, such as gene function analysis and genome annotation. In this regard, the availability of full-length cDNA clones facilitates functional analysis of the corresponding genes enabling manipulation of their expression and the generation of a variety of tagged versions of the native protein. The development of full-length cDNA sequences has the power to improve the quality of genome annotation, as well as provide tools for functional characterization of genesThe authors would like to thank to all participants in the Spanish Citrus Functional Genomic Project, specially to Drs. Javier Forment, Jose Gadea, and Vicente Conejero. This work was funded by grants from the Spanish Government GEN2001-4885-CO5-01 and GEN2001-4885-CO5-02.Marques, MC.; Perez Amador, MA. (2012). Construction and analysis of full-length and normalized cDNA libraries from citrus. Functional Genomics: Methods and Protocols. 815:51-65. https://doi.org/10.1007/978-1-61779-424-7_5S5165815Carninci P, Kvam C, Kitamura A, Ohsumi T, Okazaki Y, Itoh M, Kamiya M, Shibata K, Sasaki N, Izawa M, Muramatsu M, Hayashizaki Y, and Schneider C (1996) High-efficiency full-length cDNA cloning by biotinylated CAP trapper. Genomics 37 327–336.Carninci P, Shibata Y, Hayatsu N, Sugahara Y, Shibata K, Itoh M, Konno H, Okazaki Y, Muramatsu M, and Hayashizaki Y (2000) Normalization and subtraction of CAP-trapper-selected cDNAs to prepare full-length cDNA libraries for rapid discovery of new genes. Genome Res. 10, 1617–1630.Suzuki Y, and Sugano S (2003) Construction of a full-length enriched and a 5’-end enriched cDNA library using the Oligo-capping method. Methods Mol. Biol. 221 73–91.Clepet C, Le Clainche I, and Caboche M (2004) Improved full-length cDNA production based on RNA tagging by T4 DNA ligase. Nucleic Acids Res. 32 e6.Zhu YY, Machleder EM, Chenchik A, Li R, and Siebert PD (2001) Reverse transcriptase template switching: a SMART approach for full-length cDNA library construction. Biotechniques 30 892–897.Zhulidov PA, Bogdanova EA, Shcheglov AS, Vagner LL, Khaspekov GL, Kozhemyako VB, Matz MV, Meleshkevitch E, Moroz LL, Lukyanov SA, and Shagin DA (2004) Simple cDNA normalization using Kamchatka crab duplex-specific nuclease. Nucleic Acids Res. 32 e37.Zhulidov PA, Bogdanova EA, Shcheglov AS, Shagina IA, Wagner LL, Khazpekov GL, Kozhemyako VV, Lukyanov SA, and Shagin DA (2005) A method for the preparation of normalized cDNA libraries enriched with full-length sequences. Russian J. Bioorg. Chem. 31 170–177.Anisimova VE, Rebrikov DV, Zhulidov PA, Staroverov DB, Lukyanov SA, and Shcheglov AS (2006) Renaturation, activation, and practical use of recombinant duplex-specific nuclease from Kamchatka crab. Biochem.-Moscow 71 513–519.Toru M, Matsui T, Heidaran MA, and Aaronson SA (1989) An efficient directional cloning system to construct cDNA libraries containing full-length inserts at high frequency. Gene 83 137–146.Castelli V, Aury JM, Jaillon O, Wincker P, Clepet C, Menard M, Cruaud C, Quétier F, Scarpelli C, Schächter V, Temple G, Caboche M, Weissenbach J, and Salanoubat M (2004) Whole genome sequence comparisons and “Full-length” cDNA sequences: a combined approach to evaluate and improve Arabidopsis genome annotation. Genome Res. 14 406–413.Earley KW, Haag JR, Pontes O, Opper K, Juehne T, Song KM, and Pikaard CS (2006) Gateway-compatible vectors for plant functional genomics and proteomics. Plant J. 45 616–629.Karimi M, Inzé D, and Depicker A (2002) GATEWAY™ vectors for Agrobacterium- mediated plant transformation. TRENDS Plant Sci. 7 193–195.Hartley JL, Temple GF, and Brasch MA (2000) DNA cloning using in vitro site-specific recombination. Genome Res. 10 1788–1795.Marques M C, Alonso-Cantabrana H, Forment J, Arribas R, Alamar S, Conejero V, and Perez-Amador MA (2009) A new set of ESTs and cDNA clones from full-length and normalized libraries for gene discovery and functional characterization in citrus. BMC Genomics 10, 428

    Anticancer Gene Transfer for Cancer Gene Therapy

    Get PDF
    Gene therapy vectors are among the treatments currently used to treat malignant tumors. Gene therapy vectors use a specific therapeutic transgene that causes death in cancer cells. In early attempts at gene therapy, therapeutic transgenes were driven by non-specific vectors which induced toxicity to normal cells in addition to the cancer cells. Recently, novel cancer specific viral vectors have been developed that target cancer cells leaving normal cells unharmed. Here we review such cancer specific gene therapy systems currently used in the treatment of cancer and discuss the major challenges and future directions in this field

    ICBP90 belongs to a new family of proteins with an expression that is deregulated in cancer cells

    Get PDF
    International audienceICBP90 (Inverted CCAAT box Binding Protein of 90 kDa) is a recently identified nuclear protein that binds to one of the inverted CCAAT boxes of the topoisomerase IIalpha (TopoIIalpha) gene promoter. Here, we show that ICBP90 shares structural homology with several other proteins, including Np95, the human and mouse NIRF, suggesting the emergence of a new family of nuclear proteins. Towards elucidating the functions of this family, we analysed the expression of ICBP90 in various cancer or noncancer cell lines and in normal or breast carcinoma tissues. We found that cancer cell lines express higher levels of ICBP90 and TopoIIalpha than noncancer cell lines. By using cell-cycle phase-blocking drugs, we show that in primary cultured human lung fibroblasts, ICBP90 expression peaks at late G1 and during G2/M phases. In contrast, cancer cell lines such as HeLa, Jurkat and A549 show constant ICBP90 expression throughout the entire cell cycle. The effect of overexpression of E2F-1 is more efficient on ICBP90 and TopoIIalpha expression in noncancer cells (IMR90, WI38) than in cancer cells (U2OS, SaOs). Together, these results show that ICBP90 expression is altered in cancer cell lines and is upregulated by E2F-1 overexpression with an efficiency depending on the cancer status of the cell line

    JISTIC: Identification of Significant Targets in Cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cancer is caused through a multistep process, in which a succession of genetic changes, each conferring a competitive advantage for growth and proliferation, leads to the progressive conversion of normal human cells into malignant cancer cells. Interrogation of cancer genomes holds the promise of understanding this process, thus revolutionizing cancer research and treatment. As datasets measuring copy number aberrations in tumors accumulate, a major challenge has become to distinguish between those mutations that drive the cancer versus those passenger mutations that have no effect.</p> <p>Results</p> <p>We present JISTIC, a tool for analyzing datasets of genome-wide copy number variation to identify driver aberrations in cancer. JISTIC is an improvement over the widely used GISTIC algorithm. We compared the performance of JISTIC versus GISTIC on a dataset of glioblastoma copy number variation, JISTIC finds 173 significant regions, whereas GISTIC only finds 103 significant regions. Importantly, the additional regions detected by JISTIC are enriched for oncogenes and genes involved in cell-cycle and proliferation.</p> <p>Conclusions</p> <p>JISTIC is an easy-to-install platform independent implementation of GISTIC that outperforms the original algorithm detecting more relevant candidate genes and regions. The software and documentation are freely available and can be found at: <url>http://www.c2b2.columbia.edu/danapeerlab/html/software.html</url></p

    Hepatoblast and mesenchymal cell-specific gene-expression in fetal rat liver and in cultured fetal rat liver cells

    Get PDF
    The aim of this study was to determine whether passaged rat fetal liver cells are functional hepatoblasts. Hepatocyte/hepatoblast- and liver myofibroblast-gene-expressions were studied in adult and fetal rat liver tissues as well as in primary and passaged cultures of isolated rat fetal liver cells at both the mRNA and protein level. Desmin- and Alpha-Smooth Muscle Actin (SMA)-positive cells were located in the walls of liver vessels, whereas Desmin-positive/SMA-negative cells were distributed within the liver parenchyma. Primary cultures contained Prox1-positive hepatoblasts, Desmin/SMA-positive myofibroblasts and only a few Desmin-positive/SMA-negative cells. Albumin and alpha-fetoprotein (AFP) could be detected in the primary cultures and to a lesser extent after the first passage. The number of Desmin-positive/SMA-negative cells decreased with successive passage, such that after the second passage, only Desmin/SMA-positive cells could be detected. SMA-gene-expression increased during the passages, suggesting that myofibroblasts become the major cell population of fetal liver cell cultures over time. This observation needs to be taken into account, should passaged fetal liver cells be used for liver cell transplantation. Moreover it contradicts the concept of epithelial-mesenchymal transformation and suggests rather that selective overgrowth of mesenchymal cells occurs in culture
    corecore