1,297 research outputs found

    Evolutionary analysis of mitochondrially encoded proteins of toad-headed lizards, Phrynocephalus, along an altitudinal gradient.

    Get PDF
    BACKGROUND: Animals living at high altitude must adapt to environments with hypoxia and low temperatures, but relatively little is known about underlying genetic changes. Toad-headed lizards of the genus Phrynocephalus cover a broad altitudinal gradient of over 4000 m and are useful models for studies of such adaptive responses. In one of the first studies to have considered selection on mitochondrial protein-coding regions in an ectothermic group distributed over such a wide range of environments, we analysed nineteen complete mitochondrial genomes from all Chinese Phrynocephalus (including eight genomes sequenced for the first time). Initial analyses used site and branch-site model (program: PAML) approaches to examine nonsynonymous: synonymous substitution rates across the mtDNA tree. RESULTS: Ten positively selected sites were discovered, nine of which corresponded to subunits ND2, ND3, ND4, ND5, and ND6 within the respiratory chain enzyme mitochondrial Complex I (NADH Coenzyme Q oxidoreductase). Four of these sites showed evidence of general long-term selection across the group while the remainder showed evidence of episodic selection across different branches of the tree. Some of these branches corresponded to increases in altitude and/or latitude. Analyses of physicochemical changes in protein structures revealed that residue changes at sites that were under selection corresponded to major functional differences. Analyses of coevolution point to coevolution of selected sites within the ND4 subunit, with key sites associated with proton translocation across the mitochondrial membrane. CONCLUSIONS: Our results identify mitochondrial Complex I as a target for environment-mediated selection in this group of lizards, a complex that frequently appears to be under selection in other organisms. This makes these lizards good candidates for more detailed future studies of molecular evolution

    Increased risk of cancer among relatives of patients with lung cancer in China

    Get PDF
    BACKGROUND: Genetic factors were considered as one of the risk factors for lung cancer or other cancers. The aim of this work was to determine whether a genetic predisposition accounts for such familial aggregation of cancer among relatives of lung cancer probands. METHODS: A case-control study was conducted in 800 case families identified by lung cancer patients (probands), and in 800 control families identified by the probands'spouses. The data were analysed with logistic regression analysis model. RESULTS: The data revealed a significantly greater overall risk of cancer (OR = 1.82, P < 0.01) in the proband group. The relatives of lung cancer probands maintained an increased risk of non-lung cancer (P < 0.05) after adjusting for confounder factors. The crude odds ratio of a proband family having one family member with cancer was 1.67 compared with control families. Proband families were 2.56 times more likely to have two other family members with cancer. For three cancers and four or more cancers, the risk increased to 3.50 and 5.91, respectively. The most striking differences in cancer prevalence between proband and control families were noted for cancer risk among female relatives. The strongest effects were for not only lung cancer in any female relatives (OR 2.17, 95%CI 1.60–3.64) and mothers (OR 2.78, 95%CI 1.23–5.12) and sisters (OR 2.03, 95%CI 1.26–3.97), but also non-lung cancer in females and mothers (OR 2.00, 95%CI 1.26–3.01, and OR 2.34, 95%CI 1.28–4.40, respectively). CONCLUSION: These data support the hypothesis of a genetic susceptibility to cancer in families with lung cancer, and the female genetic susceptibility to cancer might be greater than male

    Cloning and Characterization of a Putative TAC1 Ortholog Associated with Leaf Angle in Maize (Zea mays L.)

    Get PDF
    BACKGROUND: Modifying plant architecture to increase photosynthesis efficiency and reduce shade avoidance response is very important for further yield improvement when crops are grown in high density. Identification of alleles controlling leaf angle in maize is needed to provide insight into molecular mechanism of leaf development and achieving ideal plant architecture to improve grain yield. METHODOLOGY/PRINCIPAL FINDINGS: The gene cloning was done by using comparative genomics, and then performing real-time polymerase chain reaction (RT-PCR) analysis to assay gene expression. The gene function was validated by sequence dissimilarity analysis and QTL mapping using a functional cleaved amplified polymorphism (CAP). CONCLUSIONS: The leaf angle is controlled by a major quantitative trait locus, ZmTAC1 (Zea mays L. Leaf Angle Control 1). ZmTAC1 has 4 exons encoding a protein with 263 amino acids, and its domains are the same as those of the rice OsTAC1 protein. ZmTAC1 was found to be located in the region of qLA2 by using the CAP marker and the F(2:3) families from the cross between Yu82 and Shen137. Real-time PCR analysis revealed ZmTAC1 expression was the highest in the leaf-sheath pulvinus, less in the leaf and shoot apical meristem, and the lowest in the root. A nucleotide difference in the 5'-untranslated region (UTR) between the compact inbred line Yu82 ("CTCC") and the expanded inbred line Shen137 ("CCCC") influences the expression level of ZmTAC1, further controlling the size of the leaf angle. Sequence verification of the change in the 5'-UTR revealed ZmTAC1 with "CTCC" was present in 13 compact inbred lines and ZmTAC1 with "CCCC" was present in 18 expanded inbred lines, indicating ZmTAC1 had been extensively utilized in breeding with regard to the improvement of the maize plant architecture

    Three little pieces for computer and relativity

    Full text link
    Numerical relativity has made big strides over the last decade. A number of problems that have plagued the field for years have now been mostly solved. This progress has transformed numerical relativity into a powerful tool to explore fundamental problems in physics and astrophysics, and I present here three representative examples. These "three little pieces" reflect a personal choice and describe work that I am particularly familiar with. However, many more examples could be made.Comment: 42 pages, 11 figures. Plenary talk at "Relativity and Gravitation: 100 Years after Einstein in Prague", June 25 - 29, 2012, Prague, Czech Republic. To appear in the Proceedings (Edition Open Access). Collects results appeared in journal articles [72,73, 122-124

    Observation of a ppb mass threshoud enhancement in \psi^\prime\to\pi^+\pi^-J/\psi(J/\psi\to\gamma p\bar{p}) decay

    Full text link
    The decay channel ψπ+πJ/ψ(J/ψγppˉ)\psi^\prime\to\pi^+\pi^-J/\psi(J/\psi\to\gamma p\bar{p}) is studied using a sample of 1.06×1081.06\times 10^8 ψ\psi^\prime events collected by the BESIII experiment at BEPCII. A strong enhancement at threshold is observed in the ppˉp\bar{p} invariant mass spectrum. The enhancement can be fit with an SS-wave Breit-Wigner resonance function with a resulting peak mass of M=186113+6(stat)26+7(syst)MeV/c2M=1861^{+6}_{-13} {\rm (stat)}^{+7}_{-26} {\rm (syst)} {\rm MeV/}c^2 and a narrow width that is Γ<38MeV/c2\Gamma<38 {\rm MeV/}c^2 at the 90% confidence level. These results are consistent with published BESII results. These mass and width values do not match with those of any known meson resonance.Comment: 5 pages, 3 figures, submitted to Chinese Physics

    Polyclonal rabbit anti-murine plasmacytoma cell globulins induce myeloma cells apoptosis and inhibit tumour growth in mice

    Get PDF
    Multiple myelomas (MMs) are etiologically heterogeneous and there are limited treatment options; indeed, current monoclonal antibody therapies have had limited success, so more effective antibodies are urgently needed. Polyclonal antibodies are a possible alternative because they target multiple antigens simultaneously. In this study, we produced polyclonal rabbit anti-murine plasmacytoma cell immunoglobulin (PAb) by immunizing rabbits with the murine plasmacytoma cell line MPC-11. The isolated PAb bound to plasma surface antigens in several MM cell lines, inhibited their proliferation as revealed by MTT assay, and induce apoptosis as indicated by flow cytometry, microscopic observation of apoptotic changes in morphology, and DNA fragmentation on agarose gels. The cytotoxicity of PAb on MPC-11 cell lines was both dose-dependent and time-dependent; PAb exerted a 50% inhibitory effect on MPC-11 cell viability at a concentration of 200 µg/ml in 48 h. Flow cytometry demonstrated that PAb treatment significantly increased the number of apoptotic cells (48.1%) compared with control IgG (8.3%). Apoptosis triggered by PAb was confirmed by activation of caspase-3, -8, and -9. Serial intravenous or intraperitoneal injections of PAb inhibited tumour growth and prolonged survival in mice bearing murine plasmacytoma, while TUNEL assay demonstrated that PAb induced statistically significant apoptosis (P < 0.05) compared to control treatments. We conclude that PAb is an effective agent for in vitro and in vivo induction of apoptosis in multiple myeloma and that exploratory clinical trials may be warranted

    Modeling Peripheral Olfactory Coding in Drosophila Larvae

    Get PDF
    The Drosophila larva possesses just 21 unique and identifiable pairs of olfactory sensory neurons (OSNs), enabling investigation of the contribution of individual OSN classes to the peripheral olfactory code. We combined electrophysiological and computational modeling to explore the nature of the peripheral olfactory code in situ. We recorded firing responses of 19/21 OSNs to a panel of 19 odors. This was achieved by creating larvae expressing just one functioning class of odorant receptor, and hence OSN. Odor response profiles of each OSN class were highly specific and unique. However many OSN-odor pairs yielded variable responses, some of which were statistically indistinguishable from background activity. We used these electrophysiological data, incorporating both responses and spontaneous firing activity, to develop a Bayesian decoding model of olfactory processing. The model was able to accurately predict odor identity from raw OSN responses; prediction accuracy ranged from 12%–77% (mean for all odors 45.2%) but was always significantly above chance (5.6%). However, there was no correlation between prediction accuracy for a given odor and the strength of responses of wild-type larvae to the same odor in a behavioral assay. We also used the model to predict the ability of the code to discriminate between pairs of odors. Some of these predictions were supported in a behavioral discrimination (masking) assay but others were not. We conclude that our model of the peripheral code represents basic features of odor detection and discrimination, yielding insights into the information available to higher processing structures in the brain

    Obervation of \chi_{cJ}--> omega omega decays

    Full text link
    Decays of \chi_{c0,2}\ar\ww are observed for the first time using a sample of 14.0×10614.0\times 10^6 ψ(2S)\psi(2S) events collected with the BESII detector. The branching ratios are determined to be {\cal B}(\chi_{c0}\ar \ww)=(2.29\pm 0.58\pm 0.41)\times 10^{-3} and {\cal B}(\chi_{c2}\ar\ww)=(1.77\pm 0.47\pm 0.36)\times 10^{-3}, where the first errors are statistical and the second systematic. The significances of the two signals are 4.4σ4.4\sigma and 4.7σ4.7\sigma, respectively.Comment: 6 pages, 6 figure
    corecore