214 research outputs found

    Large-scale integration of cancer microarray data identifies a robust common cancer signature

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There is a continuing need to develop molecular diagnostic tools which complement histopathologic examination to increase the accuracy of cancer diagnosis. DNA microarrays provide a means for measuring gene expression signatures which can then be used as components of genomic-based diagnostic tests to determine the presence of cancer.</p> <p>Results</p> <p>In this study, we collect and integrate ~ 1500 microarray gene expression profiles from 26 published cancer data sets across 21 major human cancer types. We then apply a statistical method, referred to as the <it>T</it>op-<it>S</it>coring <it>P</it>air of <it>G</it>roups (TSPG) classifier, and a repeated random sampling strategy to the integrated training data sets and identify a common cancer signature consisting of 46 genes. These 46 genes are naturally divided into two distinct groups; those in one group are typically expressed less than those in the other group for cancer tissues. Given a new expression profile, the classifier discriminates cancer from normal tissues by ranking the expression values of the 46 genes in the cancer signature and comparing the average ranks of the two groups. This signature is then validated by applying this decision rule to independent test data.</p> <p>Conclusion</p> <p>By combining the TSPG method and repeated random sampling, a robust common cancer signature has been identified from large-scale microarray data integration. Upon further validation, this signature may be useful as a robust and objective diagnostic test for cancer.</p

    Nano-Architecture of nitrogen-doped graphene films synthesized from a solid CN source

    Get PDF
    New synthesis routes to tailor graphene properties by controlling the concentration and chemical configuration of dopants show great promise. Herein we report the direct reproducible synthesis of 2-3% nitrogen-doped β€˜few-layer’ graphene from a solid state nitrogen carbide a-C:N source synthesized by femtosecond pulsed laser ablation. Analytical investigations, including synchrotron facilities, made it possible to identify the configuration and chemistry of the nitrogen-doped graphene films. Auger mapping successfully quantified the 2D distribution of the number of graphene layers over the surface, and hence offers a new original way to probe the architecture of graphene sheets. The films mainly consist in a Bernal ABA stacking three-layer architecture, with a layer number distribution ranging from 2 to 6. Nitrogen doping affects the charge carrier distribution but has no significant effects on the number of lattice defects or disorders, compared to undoped graphene synthetized in similar conditions. Pyridinic, quaternary and pyrrolic nitrogen are the dominant chemical configurations, pyridinic N being preponderant at the scale of the film architecture. This work opens highly promising perspectives for the development of self-organized nitrogen-doped graphene materials, as synthetized from solid carbon nitride, with various functionalities, and for the characterization of 2D materials using a significant new methodology

    Risky Decisions and Their Consequences: Neural Processing by Boys with Antisocial Substance Disorder

    Get PDF
    Adolescents with conduct and substance problems ("Antisocial Substance Disorder" (ASD)) repeatedly engage in risky antisocial and drug-using behaviors. We hypothesized that, during processing of risky decisions and resulting rewards and punishments, brain activation would differ between abstinent ASD boys and comparison boys.We compared 20 abstinent adolescent male patients in treatment for ASD with 20 community controls, examining rapid event-related blood-oxygen-level-dependent (BOLD) responses during functional magnetic resonance imaging. In 90 decision trials participants chose to make either a cautious response that earned one cent, or a risky response that would either gain 5 cents or lose 10 cents; odds of losing increased as the game progressed. We also examined those times when subjects experienced wins, or separately losses, from their risky choices. We contrasted decision trials against very similar comparison trials requiring no decisions, using whole-brain BOLD-response analyses of group differences, corrected for multiple comparisons. During decision-making ASD boys showed hypoactivation in numerous brain regions robustly activated by controls, including orbitofrontal and dorsolateral prefrontal cortices, anterior cingulate, basal ganglia, insula, amygdala, hippocampus, and cerebellum. While experiencing wins, ASD boys had significantly less activity than controls in anterior cingulate, temporal regions, and cerebellum, with more activity nowhere. During losses ASD boys had significantly more activity than controls in orbitofrontal cortex, dorsolateral prefrontal cortex, brain stem, and cerebellum, with less activity nowhere.Adolescent boys with ASD had extensive neural hypoactivity during risky decision-making, coupled with decreased activity during reward and increased activity during loss. These neural patterns may underlie the dangerous, excessive, sustained risk-taking of such boys. The findings suggest that the dysphoria, reward insensitivity, and suppressed neural activity observed among older addicted persons also characterize youths early in the development of substance use disorders

    Targeting tumor-associated macrophages by anti-tumor Chinese materia medica

    Get PDF
    Tumor-associated macrophages (TAMs) play a key role in all stages of tumorigenesis and tumor progression. TAMs secrete different kinds of cytokines, chemokines, and enzymes to affect the progression, metastasis, and resistance to therapy depending on their state of reprogramming. Therapeutic benefit in targeting TAMs suggests that macrophages are attractive targets for cancer treatment. Chinese materia medica (CMM) is an important approach for treating cancer in China and in the Asian region. According to the theory of Chinese medicine (CM) and its practice, some prescriptions of CM regulate the body's internal environment possibly including the remodeling the tumor microenvironment (TME). Here we briefly summarize the pivotal effects of TAMs in shaping the TME and promoting tumorigenesis, invasion, metastasis and immunosuppression. Furthermore, we illustrate the effects and mechanisms of CMM targeting TAMs in antitumor therapy. Finally, we reveal the CMM's dual-regulatory and multi-targeting functions on regulating TAMs, and hopefully, provide the theoretical basis for CMM clinical practice related to cancer therapy

    On the Origin of the Functional Architecture of the Cortex

    Get PDF
    The basic structure of receptive fields and functional maps in primary visual cortex is established without exposure to normal sensory experience and before the onset of the critical period. How the brain wires these circuits in the early stages of development remains unknown. Possible explanations include activity-dependent mechanisms driven by spontaneous activity in the retina and thalamus, and molecular guidance orchestrating thalamo-cortical connections on a fine spatial scale. Here I propose an alternative hypothesis: the blueprint for receptive fields, feature maps, and their inter-relationships may reside in the layout of the retinal ganglion cell mosaics along with a simple statistical connectivity scheme dictating the wiring between thalamus and cortex. The model is shown to account for a number of experimental findings, including the relationship between retinotopy, orientation maps, spatial frequency maps and cytochrome oxidase patches. The theory's simplicity, explanatory and predictive power makes it a serious candidate for the origin of the functional architecture of primary visual cortex

    Measurement of electron antineutrino oscillation based on 1230Β days of operation of the Daya Bay experiment

    Get PDF
    published_or_final_versio

    Improved Search for a Light Sterile Neutrino with the Full Configuration of the Daya Bay Experiment

    Get PDF
    published_or_final_versio

    Improved measurement of the reactor antineutrino flux and spectrum at Daya Bay

    Get PDF
    published_or_final_versio

    Independent measure of the neutrino mixing angle ΞΈ13 via neutron capture on hydrogen at Daya Bay

    Get PDF
    published_or_final_versio
    • …
    corecore