18 research outputs found

    Robust and Task-Independent Spatial Profile of the Visual Word Form Activation in Fusiform Cortex

    Get PDF
    Written language represents a special category of visual information. There is strong evidence for the existence of a cortical region in ventral occipitotemporal cortex for processing the visual form of written words. However, due to inconsistent findings obtained with different tasks, the level of specialization and selectivity of this so called visual word form area (VWFA) remains debated. In this study, we examined category selectivity for Chinese characters, a non-alphabetic script, in native Chinese readers. In contrast to traditional approaches of examining response levels in a restricted predefined region of interest (ROI), a detailed distribution of the BOLD signal across the mid-fusiform cortical surface and the spatial patterns of responses to Chinese characters were obtained. Results show that a region tuned for Chinese characters could be consistently found in the lateral part of the left fusiform gyrus in Chinese readers, and this spatial pattern of selectivity for written words was not influenced by top-down tasks such as phonological or semantic modulations. These results provide strong support for the robust spatial coding of category selective response in the mid-fusiform cortex, and demonstrate the utility of the spatial distribution analysis as a more meaningful approach to examine functional magnetic resonance imaging (fMRI) data

    Evidence for similar structural brain anomalies in youth and adult attention-deficit/hyperactivity disorder: a machine learning analysis

    Get PDF
    Attention-deficit/hyperactivity disorder (ADHD) affects 5% of children world-wide. Of these, two-thirds continue to have impairing symptoms of ADHD into adulthood. Although a large literature implicates structural brain differences of the disorder, it is not clear if adults with ADHD have similar neuroanatomical differences as those seen in children with recent reports from the large ENIGMA-ADHD consortium finding structural differences for children but not for adults. This paper uses deep learning neural network classification models to determine if there are neuroanatomical changes in the brains of children with ADHD that are also observed for adult ADHD, and vice versa. We found that structural MRI data can significantly separate ADHD from control participants for both children and adults. Consistent with the prior reports from ENIGMA-ADHD, prediction performance and effect sizes were better for the child than the adult samples. The model trained on adult samples significantly predicted ADHD in the child sample, suggesting that our model learned anatomical features that are common to ADHD in childhood and adulthood. These results support the continuity of ADHD’s brain differences from childhood to adulthood. In addition, our work demonstrates a novel use of neural network classification models to test hypotheses about developmental continuity

    BACS: The Brussels Artificial Character Sets for studies in cognitive psychology and neuroscience

    No full text
    Written symbols such as letters have been used extensively in cognitive psychology, whether to understand their contributions to written word recognition or to examine the processes involved in other mental functions. Sometimes, however, researchers want to manipulate letters while removing their associated characteristics. A powerful solution to do so is to use new characters, devised to be highly similar to letters, but without the associated sound or name. Given the growing use of artificial characters in experimental paradigms, the aim of the present study was to make available the Brussels Artificial Character Sets (BACS): two full, strictly controlled, and portable sets of artificial characters for a broad range of experimental situations.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Illiterate to literate: Behavioural and cerebral changes induced by reading acquisition.

    No full text
    The acquisition of literacy transforms the human brain. By reviewing studies of illiterate subjects, we propose specific hypotheses concerning the core brain systems whose previous function is partially reoriented or “recycled” when learning to read. Literacy acquisition improves early visual processing and reorganizes the ventral occipito-temporal pathway: a left region increases its response to written characters, while responses to faces shift towards the right hemisphere. Literacy also modifies phonological coding and strengthens the functional and anatomic link between phonemic and graphemic representations. Literacy acquisition therefore provides a remarkable example of how the brain reorganizes to accommodate a novel cultural skill.SCOPUS: re.jinfo:eu-repo/semantics/publishe
    corecore