21 research outputs found

    Direct mass measurements above uranium bridge the gap to the island of stability

    No full text
    The mass of an atom incorporates all its constituents and their interactions. The difference between the mass of an atom and the sum of its building blocks (the binding energy) is a manifestation of Einstein\u2019s famous relation E = mc^2. The binding energy determines the energy available for nuclear reactions and decays (and thus the creation of elements by stellar nucleosynthesis), and holds the key to the fundamental question of how heavy the elements can be. Superheavy elements have been observed in challenging production experiments, but our present knowledge of the binding energy of these nuclides is based only on the detection of their decay products. The reconstruction from extended decay chains introduces uncertainties that render the interpretation difficult. Here we report direct mass measurements of transuranium nuclides. Located at the farthest tip of the actinide species on the proton number\u2013neutron number diagram, these nuclides represent the gateway to the predicted island of stability. In particular, we have determined the mass values of 252-254No (atomic number 102) with the Penning trap mass spectrometer SHIPTRAP5. The uncertainties are of the order of 10 keV/c2 (representing a relative precision of 0.05 p.p.m.), despite minute production rates of less than one atom per second. Our experiments advance direct mass measurements by ten atomic numbers with no loss in accuracy, and provide reliable anchor points en route to the island of stability

    Polaron hopping mediated by nuclear tunnelling in semiconducting polymers at high carrier density

    Get PDF
    <p>The transition rate for a single hop of a charge carrier in a semiconducting polymer is assumed to be thermally activated. As the temperature approaches absolute zero, the predicted conductivity becomes infinitesimal in contrast to the measured finite conductivity. Here we present a uniform description of charge transport in semiconducting polymers, including the existence of absolute-zero ground-state oscillations that allow nuclear tunnelling through classical barriers. The resulting expression for the macroscopic current shows a power-law dependence on both temperature and voltage. To suppress the omnipresent disorder, the predictions are experimentally verified in semiconducting polymers at high carrier density using chemically doped in-plane diodes and ferroelectric field-effect transistors. The renormalized current-voltage characteristics of various polymers and devices at all temperatures collapse on a single universal curve, thereby demonstrating the relevance of nuclear tunnelling for organic electronic devices.</p>
    corecore