2,780 research outputs found

    Successive spin-flop transitions of a Neel-type antiferromagnet Li2MnO3 single crystal with a honeycomb lattice

    Get PDF
    We have carried out high magnetic field studies of single-crystalline Li2MnO3, a honeycomb lattice antiferromagnet. Its magnetic phase diagram was mapped out using magnetization measurements at applied fields up to 35 T. Our results show that it undergoes two successive meta-magnetic transitions around 9 T fields applied perpendicular to the ab plane (along the c* axis). These phase transitions are completely absent in the magnetization measured with the field applied along the ab plane. In order to understand this magnetic phase diagram, we developed a mean-field model starting from the correct Neel-type magnetic structure, consistent with our single crystal neutron diffraction data at zero field. Our model calculations succeeded in explaining the two meta-magnetic transitions that arise when Li2MnO3 enters two different spin-flop phases from the zero field Neel phase.open1187Nsciescopu

    Biological potential of polyethylene glycol (Peg)-functionalized graphene quantum dots in in vitro neural stem/progenitor cells

    Get PDF
    Stem cell therapy is one of the novel and prospective fields. The ability of stem cells to differentiate into different lineages makes them attractive candidates for several therapies. It is essential to understand the cell fate, distribution, and function of transplanted cells in the local microenvironment before their applications. Therefore, it is necessary to develop an accurate and reliable labeling method of stem cells for imaging techniques to track their translocation after transplantation. The graphitic quantum dots (GQDs) are selected among various stem cell labeling and tracking strategies which have high photoluminescence ability, photostability, relatively low cytotoxicity, tunable surface functional groups, and delivering capacity. Since GQDs interact easily with the cell and interfere with cell behavior through surface functional groups, an appropriate surface modification needs to be considered to get close to the ideal labeling nanoprobes. In this study, polyethylene glycol (PEG) is used to improve biocompatibility while simultaneously maintaining the photoluminescent potentials of GQDs. The biochemically inert PEG successfully covered the surface of GQDs. The PEG-GQDs composites show adequate bioimaging capabilities when internalized into neural stem/progenitor cells (NSPCs). Furthermore, the bio-inertness of the PEG-GQDs is confirmed. Herein, we introduce the PEG-GQDs as a valuable tool for stem cell labeling and tracking for biomedical therapies in the field of neural regeneration

    Transitions/relaxations in polyester adhesive/PET system

    Get PDF
    The correlations between the transitions and the dielectric relaxation processes of the oriented poly(ethylene terephthalate) (PET) pre-impregnated of the polyester thermoplastic adhesive have been investigated by differential scanning calorimetry (DSC) and dynamic dielectric spectroscopy (DDS). The thermoplastic polyester adhesive and the oriented PET films have been studied as reference samples. This study evidences that the adhesive chain segments is responsible for the physical structure evolution in the PET-oriented film. The transitions and dielectric relaxation modes’ evolutions in the glass transition region appear characteristic of the interphase between adhesive and PET film, which is discussed in terms of molecular mobility. The storage at room temperature of the adhesive tape involves the heterogeneity of the physical structure, characterized by glass transition dissociation. Thus, the correlation between the transitions and the dielectric relaxation processes evidences a segregation of the amorphous phases. Therefore, the physical structure and the properties of the material have been linked to the chemical characteristics

    Validation and Reliability of a Smartphone Application for the International Prostate Symptom Score Questionnaire: A Randomized Repeated Measures Crossover Study

    Get PDF
    Background: Smartphone-based assessment may be a useful diagnostic and monitoring tool for patients. There have been many attempts to create a smartphone diagnostic tool for clinical use in various medical fields but few have demonstrated scientific validity. Objective: The purpose of this study was to develop a smartphone application of the International Prostate Symptom Score (IPSS) and to demonstrate its validity and reliability. Methods: From June 2012 to May 2013, a total of 1581 male participants (>= 40 years old), with or without lower urinary tract symptoms (LUTS), visited our urology clinic via the health improvement center at Soonchunhyang University Hospital (Republic of Korea) and were enrolled in this study. A randomized repeated measures crossover design was employed using a smartphone application of the IPSS and the conventional paper form of the IPSS. Paired t test under a hypothesis of non-inferior trial was conducted. For the reliability test, the intraclass correlation coefficient (ICC) was measured. Results: The total score of the IPSS (P=.289) and each item of the IPSS (P=.157-1.000) showed no differences between the paper version and the smartphone version of the IPSS. The mild, moderate, and severe LUTS groups showed no differences between the two versions of the IPSS. A significant correlation was noted in the total group (ICC=.935, P<.001). The mild, moderate, and severe LUTS groups also showed significant correlations (ICC=.616,.549, and .548 respectively, all P<.001). There was selection bias in this study, as only participants who had smartphones could participate. Conclusions: The validity and reliability of the smartphone application version were comparable to the conventional paper version of the IPSS. The smartphone application of the IPSS could be an effective method for measuring lower urinary tract symptoms.X1144Ysciescopu

    Source Characteristics of the 2016 Meinong (ML 6.6) Taiwan Earthquake Revealed from Dense Seismic Arrays: Double Sources and Pulse-like Velocity Ground Motion

    Get PDF
    The 5 February 2016, Meinong, Taiwan, earthquake brought extensive damage to nearby cities with significant pulse‐like velocity ground motions. In addition to the spatial slip distribution determination using filtered strong‐motion data, we show that, with the advantage of the densely distributed seismic network as a seismic array, we can project the earthquake sources (asperities) directly using nearly unfiltered data, which is crucial to the understanding of the generation of the pulse‐like velocity ground motions. We recognize that the moderate but damaging ML 6.6 Meinong earthquake was a composite of an Mw 5.5 foreshock and an Mw 6.18 mainshock with a 1.8–5.0 s time delay. The foreshock occurred at the hypocenter reported by the official agency, followed by the mainshock with a centroid located at 12.3 km to the north‐northwest of the hypocenter and at a depth of 15 km. This foreshock–mainshock composition is not distinguishable in the finite‐fault inversion because it filtered the seismic data to low frequencies. Our results show that the pulse‐like velocity ground motions are mainly attributed to the source of mainshock with its directivity and site effects, resulting in the disastrous damages in the city of Tainan. Although finite‐fault inversion using filtered seismic data for spatial slip distribution on the fault has been a classic procedure in understanding earthquake rupture processes, using a dense seismic network as a seismic array for unfiltered records helps us delineate the earthquake sources directly and provide more delicate information for future understanding of earthquake source complexity

    Thermoelectric spin voltage in graphene

    Get PDF
    In recent years, new spin-dependent thermal effects have been discovered in ferromagnets, stimulating a growing interest in spin caloritronics, a field that exploits the interaction between spin and heat currents. Amongst the most intriguing phenomena is the spin Seebeck effect, in which a thermal gradient gives rise to spin currents that are detected through the inverse spin Hall effect. Non-magnetic materials such as graphene are also relevant for spin caloritronics, thanks to efficient spin transport, energy-dependent carrier mobility and unique density of states. Here, we propose and demonstrate that a carrier thermal gradient in a graphene lateral spin valve can lead to a large increase of the spin voltage near to the graphene charge neutrality point. Such an increase results from a thermoelectric spin voltage, which is analogous to the voltage in a thermocouple and that can be enhanced by the presence of hot carriers generated by an applied current. These results could prove crucial to drive graphene spintronic devices and, in particular, to sustain pure spin signals with thermal gradients and to tune the remote spin accumulation by varying the spin-injection bias

    Monsoon versus Uplift in Southwestern China–Late Pliocene Climate in Yuanmou Basin, Yunnan

    Get PDF
    Yuanmou Basin of Yunnan, SW China, is a famous locality with hominids, hominoids, mammals and plant fossils. Based on the published megaflora and palynoflora data from Yuanmou Basin, the climate of Late Pliocene is reconstructed using the Coexistence Approach. The results indicate a warm and humid subtropical climate with a mean annual temperature of ca. 16–17°C and a mean annual precipitation of ca. 1500–1600 mm in the Late Pliocene rather than a dry, hot climate today, which may be due to the local tectonic change and gradual intensification of India monsoon. The comparison of Late Pliocene climate in Eryuan, Yangyi, Longling, and Yuanmou Basin of Yunnan Province suggests that the mean annual temperatures generally show a latitudinal gradient and fit well with their geographic position, while the mean annual precipitations seem to be related to the different geometries of the valleys under the same monsoon system

    Occurrence of red clay horizon in soil profiles of the Yellow River Delta: Implications for accumulation of heavy metals

    Get PDF
    The source-area weathering and pedogenesis processes in the alluvial soil profiles might affect depth distribution of heavy metals. Red clay horizon (RCH) with a thickness of 5-50 cm in a 1 m soil profile has been found ubiquitously in the Yellow River Delta (YRD). The occurrence of this RCH was supposed to be related with the frequent shifting of the Yellow River tail channel in the Yellow River Delta (YRD). The geochemical features of the RCH were distinct from its upper or lower yellow silt horizon (YSH). The average median grain size of the RCH (10.5 pm) was almost three times lower than that of the YSH (29.9 mu m). Meanwhile, the RCH was characterized of higher chemical index of alteration (CIA), magnetic susceptibility (chi(lf)) and frequency-dependent magnetic susceptibility (chi(fd)) values than the YSH, which implied a stronger source-area weathering and pedogenesis intensity of the RCH. Besides the distinctive characteristics of the RCH, it also accumulated significantly (p < 0.05) higher mean contents of Cu, Zn, Pb, Cr, Ni and Co, and maximum content of Cd in the RCH than that in the YSH. The principal component analysis (PCA) suggested that distribution of the heavy metals in the YRD soil profiles was significantly related to the content of aluminosilicates, oxides, clay fraction, chi(lf) and chi(fd), however, such a correlation was not found except for Pb in the YSH. In addition, result of BCR sequential extraction indicated that a higher percentage of Fe-Mn oxides associated fraction was in the RCH than in the YSH for the heavy metals of Pb and Co. Cadmium was observed at higher percentage of exchangeable fraction in the RCH than in the YSH, implying a higher environmental risk of the Cd in the RCH. (C) 2015 Elsevier B.V. All rights reserved

    Geographic Distribution of Urologists in Korea, 2007 to 2012

    Get PDF
    The adequacy of the urologist work force in Korea has never been investigated. This study investigated the geographic distribution of urologists in Korea. County level data from the National Health Insurance Service and National Statistical Office was analyzed in this ecological study. Urologist density was defined by the number of urologists per 100,000 individuals. National patterns of urologist density were mapped graphically at the county level using GIS software. To control the time sequence, regression analysis with fitted line plot was conducted. The difference of distribution of urologist density was analyzed by ANCOVA. Urologists density showed an uneven distribution according to county characteristics (metropolitan cities vs. nonmetropolitan cities vs. rural areas; mean square = 102.329, P < 0.001) and also according to year (mean square = 9.747, P = 0.048). Regression analysis between metropolitan and non-metropolitan cities showed significant difference in the change of urologists per year (P = 0.019). Metropolitan cities vs. rural areas and non-metropolitan cities vs. rural areas showed no differences. Among the factors, the presence of training hospitals was the affecting factor for the uneven distribution of urologist density (P < 0.001). Uneven distribution of urologists in Korea likely originated from the relatively low urologist density in rural areas. However, considering the time sequencing data from 2007 to 2012, there was a difference between the increase of urologist density in metropolitan and non-metropolitan cities.open1122sciescopuskc
    corecore