602 research outputs found

    Histiocytic sarcoma simulating immune thrombocytopenic purpura

    Get PDF
    published_or_final_versio

    Transfusion-refractory anaemia in liver cirrhosis

    Get PDF
    published_or_final_versio

    Relation between air pollution and allergic rhinitis in Taiwanese schoolchildren

    Get PDF
    BACKGROUND: Recent findings suggest that exposure to outdoor air pollutants may increase the risk of allergic rhinitis. The results of these studies are inconsistent, but warrant further attention. The objective of the study was to assess the effect of relation between exposure to urban air pollution and the prevalence allergic rhinitis among school children. METHODS: We conducted a nationwide cross-sectional study of 32,143 Taiwanese school children. We obtained routine air-pollution monitoring data for sulphur dioxide (SO(2)), nitrogen oxides (NOx), ozone (O(3)), carbon monoxide (CO), and particles with an aerodynamic diameter of 10 μm or less (PM(10)). A parent-administered questionnaire provided information on individual characteristics and indoor environments (response rate 92%). Municipal-level exposure was calculated using the mean of the 2000 monthly averages. The effect estimates were presented as odds ratios (ORs) per 10 ppb change for SO(2), NOx, and O(3), 100 ppb change for CO, and 10 μg/m(3 )change for PM(10). RESULTS: In two-stage hierarchical model adjusting for confounding, the prevalence of allergic rhinitis was significantly associated with SO(2 )(adjusted odds ratio (OR) = 1.43, 95% confidence interval (CI): 1.25, 1.64), CO (aOR = 1.05, 95% CI: 1.04, 1.07), and NOx (aOR = 1.11, 95% CI: 1.08, 1.15). Contrary to our hypothesis, the prevalence of allergic rhinitis was weakly or not related to O(3 )(aOR = 1.05, 95% CI: 0.98, 1.12) and PM(10 )(aOR = 1.00, 95% CI: 0.99, 1.02). CONCLUSION: Persistent exposure to NOx, CO, and SO(2 )may increase the prevalence of allergic rhinitis in children

    Pulmonary Function and Incident Bronchitis and Asthma in Children: A Community-Based Prospective Cohort Study

    Get PDF
    BACKGROUND: Previous studies revealed that reduction of airway caliber in infancy might increase the risks for wheezing and asthma. However, the evidence for the predictive effects of pulmonary function on respiratory health in children was still inconsistent. METHODS: We conducted a population-based prospective cohort study among children in 14 Taiwanese communities. There were 3,160 children completed pulmonary function tests in 2007 and follow-up questionnaire in 2009. Poisson regression models were performed to estimate the effect of pulmonary function on the development of bronchitis and asthma. RESULTS: After adjustment for potential confounders, pulmonary function indices consistently showed protective effects on respiratory diseases in children. The incidence rate ratios of bronchitis and asthma were 0.86 (95% CI 0.79-0.95) and 0.91 (95% CI 0.82-0.99) for forced expiratory volume in 1 second (FEV₁). Similar adverse effects of maximal mid-expiratory flow (MMEF) were also observed on bronchitis (RR = 0.73, 95% CI 0.67-0.81) and asthma (RR = 0.85, 95% CI 0.77-0.93). We found significant decreasing trends in categorized FEV₁ (p for trend = 0.02) and categories of MMEF (p for trend = 0.01) for incident bronchitis. Significant modification effects of traffic-related air pollution were noted for FEV₁ and MMEF on bronchitis and also for MMEF on asthma. CONCLUSIONS: Children with high pulmonary function would have lower risks on the development of bronchitis and asthma. The protective effect of high pulmonary function would be modified by traffic-related air pollution exposure

    Lower extremity joint kinetics and lumbar curvature during squat and stoop lifting

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In this study, kinematics and kinetics of the lower extremity joint and the lumbar lordosis during two different symmetrical lifting techniques(squat and stoop) were examined using the three-dimensional motion analysis.</p> <p>Methods</p> <p>Twenty-six young male volunteers were selected for the subjects in this study. While they lifted boxes weighing 5, 10 and 15 kg by both squat and stoop lifting techniques, their motions were captured and analyzed using the 3D motion analysis system which was synchronized with two forceplates and the electromyographic system. Joint kinematics was determined by the forty-three reflective markers which were attached on the anatomical locations based on the VICON Plug-in-Gait marker placement protocol. Joint kinetics was analyzed by using the inverse dynamics. Paired t-test and Kruskal-Wallis test was used to compare the differences of variables between two techniques, and among three different weights. Correlation coefficient was calculated to explain the role of lower limb joint motion in relation to the lumbar lordosis.</p> <p>Results</p> <p>There were not significant differences in maximum lumbar joint moments between two techniques. The hip and ankle contributed the most part of the support moment during squat lifting, and the knee flexion moment played an important role in stoop lifting. The hip, ankle and lumbar joints generated power and only the knee joint absorbed power in the squat lifting. The knee and ankle joints absorbed power, the hip and lumbar joints generated power in the stoop lifting. The bi-articular antagonist muscles' co-contraction around the knee joint during the squat lifting and the eccentric co-contraction of the gastrocnemius and the biceps femoris were found important for maintaining the straight leg during the stoop lifting. At the time of lordotic curvature appearance in the squat lifting, there were significant correlations in all three lower extremity joint moments with the lumbar joint. Differently, only the hip moment had significant correlation with the lumbar joint in the stoop lifting.</p> <p>Conclusion</p> <p>In conclusion, the knee extension which is prominent kinematics during the squat lifting was produced by the contributions of the kinetic factors from the hip and ankle joints(extensor moment and power generation) and the lumbar extension which is prominent kinematics during the stoop lifting could be produced by the contributions of the knee joint kinetic factors(flexor moment, power absorption, bi-articular muscle function).</p

    Lower extremity joint kinetics and lumbar curvature during squat and stoop lifting

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In this study, kinematics and kinetics of the lower extremity joint and the lumbar lordosis during two different symmetrical lifting techniques(squat and stoop) were examined using the three-dimensional motion analysis.</p> <p>Methods</p> <p>Twenty-six young male volunteers were selected for the subjects in this study. While they lifted boxes weighing 5, 10 and 15 kg by both squat and stoop lifting techniques, their motions were captured and analyzed using the 3D motion analysis system which was synchronized with two forceplates and the electromyographic system. Joint kinematics was determined by the forty-three reflective markers which were attached on the anatomical locations based on the VICON Plug-in-Gait marker placement protocol. Joint kinetics was analyzed by using the inverse dynamics. Paired t-test and Kruskal-Wallis test was used to compare the differences of variables between two techniques, and among three different weights. Correlation coefficient was calculated to explain the role of lower limb joint motion in relation to the lumbar lordosis.</p> <p>Results</p> <p>There were not significant differences in maximum lumbar joint moments between two techniques. The hip and ankle contributed the most part of the support moment during squat lifting, and the knee flexion moment played an important role in stoop lifting. The hip, ankle and lumbar joints generated power and only the knee joint absorbed power in the squat lifting. The knee and ankle joints absorbed power, the hip and lumbar joints generated power in the stoop lifting. The bi-articular antagonist muscles' co-contraction around the knee joint during the squat lifting and the eccentric co-contraction of the gastrocnemius and the biceps femoris were found important for maintaining the straight leg during the stoop lifting. At the time of lordotic curvature appearance in the squat lifting, there were significant correlations in all three lower extremity joint moments with the lumbar joint. Differently, only the hip moment had significant correlation with the lumbar joint in the stoop lifting.</p> <p>Conclusion</p> <p>In conclusion, the knee extension which is prominent kinematics during the squat lifting was produced by the contributions of the kinetic factors from the hip and ankle joints(extensor moment and power generation) and the lumbar extension which is prominent kinematics during the stoop lifting could be produced by the contributions of the knee joint kinetic factors(flexor moment, power absorption, bi-articular muscle function).</p

    Broadband Linear-Dichroic Photodetector in a Black Phosphorus Vertical p-n Junction

    Full text link
    The ability to detect light over a broad spectral range is central for practical optoelectronic applications, and has been successfully demonstrated with photodetectors of two-dimensional layered crystals such as graphene and MoS2. However, polarization sensitivity within such a photodetector remains elusive. Here we demonstrate a linear-dichroic broadband photodetector with layered black phosphorus transistors, using the strong intrinsic linear dichroism arising from the in-plane optical anisotropy with respect to the atom-buckled direction, which is polarization sensitive over a broad bandwidth from 400 nm to 3750 nm. Especially, a perpendicular build-in electric field induced by gating in black phosphorus transistors can spatially separate the photo-generated electrons and holes in the channel, effectively reducing their recombination rate, and thus enhancing the efficiency and performance for linear dichroism photodetection. This provides new functionality using anisotropic layered black phosphorus, thereby enabling novel optical and optoelectronic device applications.Comment: 18 pages, 5 figures in Nature Nanotechnology 201

    Using Microsatellites to Understand the Physical Distribution of Recombination on Soybean Chromosomes

    Get PDF
    Soybean is a major crop that is an important source of oil and proteins. A number of genetic linkage maps have been developed in soybean. Specifically, hundreds of simple sequence repeat (SSR) markers have been developed and mapped. Recent sequencing of the soybean genome resulted in the generation of vast amounts of genetic information. The objectives of this investigation were to use SSR markers in developing a connection between genetic and physical maps and to determine the physical distribution of recombination on soybean chromosomes. A total of 2,188 SSRs were used for sequence-based physical localization on soybean chromosomes. Linkage information was used from different maps to create an integrated genetic map. Comparison of the integrated genetic linkage maps and sequence based physical maps revealed that the distal 25% of each chromosome was the most marker-dense, containing an average of 47.4% of the SSR markers and 50.2% of the genes. The proximal 25% of each chromosome contained only 7.4% of the markers and 6.7% of the genes. At the whole genome level, the marker density and gene density showed a high correlation (R2) of 0.64 and 0.83, respectively with the physical distance from the centromere. Recombination followed a similar pattern with comparisons indicating that recombination is high in telomeric regions, though the correlation between crossover frequency and distance from the centromeres is low (R2 = 0.21). Most of the centromeric regions were low in recombination. The crossover frequency for the entire soybean genome was 7.2%, with extremes much higher and lower than average. The number of recombination hotspots varied from 1 to 12 per chromosome. A high correlation of 0.83 between the distribution of SSR markers and genes suggested close association of SSRs with genes. The knowledge of distribution of recombination on chromosomes may be applied in characterizing and targeting genes

    Effective Rheology of Bubbles Moving in a Capillary Tube

    Full text link
    We calculate the average volumetric flux versus pressure drop of bubbles moving in a single capillary tube with varying diameter, finding a square-root relation from mapping the flow equations onto that of a driven overdamped pendulum. The calculation is based on a derivation of the equation of motion of a bubble train from considering the capillary forces and the entropy production associated with the viscous flow. We also calculate the configurational probability of the positions of the bubbles.Comment: 4 pages, 1 figur
    corecore