2,883 research outputs found
Imaging the homogeneous nucleation during the melting of superheated colloidal crystals
The nucleation process is crucial to many phase transitions, but its kinetics are difficult to predict and measure. We superheated and melted the interior of thermal-sensitive colloidal crystals and investigated by means of video microscopy the homogeneous melting at single-particle resolution. The observed nucleation precursor was local particle-exchange loops surrounded by particles with large displacement amplitudes rather than any defects. The critical size, incubation time, and shape and size evolutions of the nucleus were measured. They deviate from the classical nucleation theory under strong superheating, mainly because of the coalescence of nuclei. The superheat limit agrees with the measured Born and Lindemann instabilities
Influenza Virus-Induced Lung Inflammation Was Modulated by Cigarette Smoke Exposure in Mice
published_or_final_versio
Abnormal variation of band gap in Zn doped Bi0.9La0.1FeO3 nanoparticles: Role of Fe-O-Fe bond angle and Fe-O bond anisotropy
published_or_final_versio
Laser feedback interferometry in multi-mode terahertz quantum cascade lasers
The typical modal characteristics arising during laser feedback interferometry (LFI) in multi-mode terahertz (THz) quantum cascade lasers (QCLs) are investigated in this work. To this end, a set of multi-mode reduced rate equations with gain saturation for a general Fabry-Pérot multi-mode THz QCL under optical feedback is developed. Depending on gain bandwidth of the laser and optical feedback level, three different operating regimes are identified, namely a single-mode regime, a multi-mode regime, and a tuneable-mode regime. When the laser operates in the single-mode and multi-mode regimes, the self-mixing signal amplitude (peak to peak value of the self-mixing fringes) is proportional to the feedback coupling rate at each mode frequency. However, this rule no longer holds when the laser enters into the tuneable-mode regime, in which the feedback level becomes sufficiently strong (the boundary value of the feedback level depends on the gain bandwidth). The mapping of the identified feedback regimes of the multi-mode THz QCL in the space of the gain bandwidth and feedback level is investigated. In addition, the dependence of the aforementioned mapping of these three regimes on the linewidth enhancement factor of the laser is also explored, which provides a systematic picture of the potential of LFI in multi-mode THz QCLs for spectroscopic sensing applications
Phenomenology of event shapes at hadron colliders
We present results for matched distributions of a range of dijet event shapes
at hadron colliders, combining next-to-leading logarithmic (NLL) accuracy in
the resummation exponent, next-to-next-to leading logarithmic (NNLL) accuracy
in its expansion and next-to-leading order (NLO) accuracy in a pure alpha_s
expansion. This is the first time that such a matching has been carried out for
hadronic final-state observables at hadron colliders. We compare our results to
Monte Carlo predictions, with and without matching to multi-parton tree-level
fixed-order calculations. These studies suggest that hadron-collider event
shapes have significant scope for constraining both perturbative and
non-perturbative aspects of hadron-collider QCD. The differences between
various calculational methods also highlight the limits of relying on
simultaneous variations of renormalisation and factorisation scale in making
reliable estimates of uncertainties in QCD predictions. We also discuss the
sensitivity of event shapes to the topology of multi-jet events, which are
expected to appear in many New Physics scenarios.Comment: 70 pages, 25 figures, additional material available from
http://www.lpthe.jussieu.fr/~salam/pp-event-shapes
Incidence of rotavirus gastroenteritis by age in African, Asian and European children: Relevance for timing of rotavirus vaccination
© 2016 The Author(s). Published with license by Taylor & Francis. © GSK Biologicals SA.Variability in rotavirus gastroenteritis (RVGE) epidemiology can influence the optimal vaccination schedule. We evaluated regional trends in the age of RVGE episodes in low- to middle- versus high-income countries in three continents. We undertook a post-hoc analysis based on efficacy trials of a human rotavirus vaccine (HRV; Rotarix™, GSK Vaccines), in which 1348, 1641, and 5250 healthy infants received a placebo in Europe (NCT00140686), Africa (NCT00241644), and Asia (NCT00197210, NCT00329745). Incidence of any/severe RVGE by age at onset was evaluated by active surveillance over the first two years of life. Severity of RVGE episodes was assessed using the Vesikari-scale. The incidence of any RVGE in Africa was higher than in Europe during the first year of life (≤2.78% vs. ≤2.03% per month), but much lower during the second one (≤0.86% versus ≤2.00% per month). The incidence of severe RVGE in Africa was slightly lower than in Europe during the first year of life. Nevertheless, temporal profiles for the incidence of severe RVGE in Africa and Europe during the first (≤1.00% and ≤1.23% per month) and second (≤0.53% and ≤1.13% per month) years of life were similar to those of any RVGE. Any/severe RVGE incidences peaked at younger ages in Africa vs. Europe. In high-income Asian regions, severe RVGE incidence (≤0.31% per month) remained low during the study. The burden of any RVGE was higher earlier in life in children from low- to middle- compared with high-income countries. Differing rotavirus vaccine schedules are likely warranted to maximize protection in different settings
Genome maps across 26 human populations reveal population-specific patterns of structural variation.
Large structural variants (SVs) in the human genome are difficult to detect and study by conventional sequencing technologies. With long-range genome analysis platforms, such as optical mapping, one can identify large SVs (>2 kb) across the genome in one experiment. Analyzing optical genome maps of 154 individuals from the 26 populations sequenced in the 1000 Genomes Project, we find that phylogenetic population patterns of large SVs are similar to those of single nucleotide variations in 86% of the human genome, while ~2% of the genome has high structural complexity. We are able to characterize SVs in many intractable regions of the genome, including segmental duplications and subtelomeric, pericentromeric, and acrocentric areas. In addition, we discover ~60 Mb of non-redundant genome content missing in the reference genome sequence assembly. Our results highlight the need for a comprehensive set of alternate haplotypes from different populations to represent SV patterns in the genome
A Case of Cicatricial Alopecia Associated with Erlotinib
Erlotinib is a small-molecule tyrosine kinase inhibitor (TKI) of the epidermal growth factor receptor (EGFR). Erlotinib has been used primarily to treat non-small cell lung cancer. In addition to its role in tumor cells, EGFR is also an important regulator of growth and differentiation in the skin and hair. Therefore, EGFR-TKIs have been associated with a number of cutaneous side effects including follicular acneiform eruptions, cutaneous xerosis, chronic paronychia, desquamation, seborrheic dermatitis, and hair texture changes. Herein, we report a rare case of a 61-year-old woman who was treated with erlotinib and experienced cicatricial alopecia
- …