19 research outputs found

    Longitudinal relationship between emotion regulation and aggressive behavior: The moderating effect of caregiving

    Get PDF
    Aggressive behavior (or violence) among juvenile offenders is a major social problem in the United States. Emotion Regulation (ER) is a critical developmental task that cuts across adolescence. However, there is paucity of research directly linking deficits in ER to aggressive behavior among juvenile offenders. Furthermore, researchers have failed to examine how the effect of ER on aggressive behavior is influenced by the adolescents’ immediate environment, particularly by caregiving. Acknowledging this gap in the current literature this study represents the first attempt to examine caregiving as a moderator in the relationship between ER and self-report of aggressive offending behavior among ethnically diverse juvenile offenders. Specifically, this study examined two caregiving dimensions (caregiver-adolescent affective relationships and monitoring) that affect development of ER and aggressive behavior from two theoretical perspectives: ecological-transactional model and attachment theory. Applying an ecological-transactional perspective, aggressive behavior was conceptualized as a byproduct of the mutual interaction between adolescent ontogenic development (ER) and the microsystem (caregiving). Attachment theory was integrated with the ecological-transactional model so as to delineate the underlying psychological mechanism regarding the dynamic interactions between ER and caregiving. The present study used a longitudinal design analyzing the Pathways to Desistance study (n=892; 84% males; 21% White). The findings of the study suggest that changes in ER may cause—and do not merely predict—decline in juvenile offenders’ aggressive behavior. The interaction effect was small in magnitude; however, monitoring operated as a significant moderator in the relationship between changes in ER and changes in aggressive behavior. The results imply that the increased ability to regulate emotion is a strong protective factor against aggressive behavior. Furthermore, effective caregiver’s monitoring may promote positive development of cognitive ER. These relationships may operate synergetically, and may significantly contribute to decreases in aggressive behavior among juvenile offenders. The findings of this study hold strong implications for social work practitioners to treat juvenile offenders and their families. In an effort to reduce and prevent the perpetration of aggressive and violent behavior, social work practitioners in juvenile justice settings need to strengthen intervention efforts to improve ER skills and the quality of caregiving

    Incorporating molecular data in fungal systematics: a guide for aspiring researchers

    Get PDF
    The last twenty years have witnessed molecular data emerge as a primary research instrument in most branches of mycology. Fungal systematics, taxonomy, and ecology have all seen tremendous progress and have undergone rapid, far-reaching changes as disciplines in the wake of continual improvement in DNA sequencing technology. A taxonomic study that draws from molecular data involves a long series of steps, ranging from taxon sampling through the various laboratory procedures and data analysis to the publication process. All steps are important and influence the results and the way they are perceived by the scientific community. The present paper provides a reflective overview of all major steps in such a project with the purpose to assist research students about to begin their first study using DNA-based methods. We also take the opportunity to discuss the role of taxonomy in biology and the life sciences in general in the light of molecular data. While the best way to learn molecular methods is to work side by side with someone experienced, we hope that the present paper will serve to lower the learning threshold for the reader

    Concordant Signaling Pathways Produced by Pesticide Exposure in Mice Correspond to Pathways Identified in Human Parkinson's Disease

    Get PDF
    Parkinson's disease (PD) is a neurodegenerative disease in which the etiology of 90 percent of the patients is unknown. Pesticide exposure is a major risk factor for PD, and paraquat (PQ), pyridaben (PY) and maneb (MN) are amongst the most widely used pesticides. We studied mRNA expression using transcriptome sequencing (RNA-Seq) in the ventral midbrain (VMB) and striatum (STR) of PQ, PY and paraquat+maneb (MNPQ) treated mice, followed by pathway analysis. We found concordance of signaling pathways between the three pesticide models in both the VMB and STR as well as concordance in these two brain areas. The concordant signaling pathways with relevance to PD pathogenesis were e.g. axonal guidance signaling, Wnt/β-catenin signaling, as well as pathways not previously linked to PD, e.g. basal cell carcinoma, human embryonic stem cell pluripotency and role of macrophages, fibroblasts and endothelial cells in rheumatoid arthritis. Human PD pathways previously identified by expression analysis, concordant with VMB pathways identified in our study were axonal guidance signaling, Wnt/β-catenin signaling, IL-6 signaling, ephrin receptor signaling, TGF-β signaling, PPAR signaling and G-protein coupled receptor signaling. Human PD pathways concordant with the STR pathways in our study were Wnt/β-catenin signaling, axonal guidance signaling and G-protein coupled receptor signaling. Peroxisome proliferator activated receptor delta (Ppard) and G-Protein Coupled Receptors (GPCRs) were common genes in VMB and STR identified by network analysis. In conclusion, the pesticides PQ, PY and MNPQ elicit common signaling pathways in the VMB and STR in mice, which are concordant with known signaling pathways identified in human PD, suggesting that these pathways contribute to the pathogenesis of idiopathic PD. The analysis of these networks and pathways may therefore lead to improved understanding of disease pathogenesis, and potential novel therapeutic targets

    Fosmid library end sequencing reveals a rarely known genome structure of marine shrimp Penaeus monodon

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The black tiger shrimp (<it>Penaeus monodon</it>) is one of the most important aquaculture species in the world, representing the crustacean lineage which possesses the greatest species diversity among marine invertebrates. Yet, we barely know anything about their genomic structure. To understand the organization and evolution of the <it>P. monodon </it>genome, a fosmid library consisting of 288,000 colonies and was constructed, equivalent to 5.3-fold coverage of the 2.17 Gb genome. Approximately 11.1 Mb of fosmid end sequences (FESs) from 20,926 non-redundant reads representing 0.45% of the <it>P. monodon </it>genome were obtained for repetitive and protein-coding sequence analyses.</p> <p>Results</p> <p>We found that microsatellite sequences were highly abundant in the <it>P. monodon </it>genome, comprising 8.3% of the total length. The density and the average length of microsatellites were evidently higher in comparison to those of other taxa. AT-rich microsatellite motifs, especially poly (AT) and poly (AAT), were the most abundant. High abundance of microsatellite sequences were also found in the transcribed regions. Furthermore, <it>via </it>self-BlastN analysis we identified 103 novel repetitive element families which were categorized into four groups, <it>i.e</it>., 33 WSSV-like repeats, 14 retrotransposons, 5 gene-like repeats, and 51 unannotated repeats. Overall, various types of repeats comprise 51.18% of the <it>P. monodon </it>genome in length. Approximately 7.4% of the FESs contained protein-coding sequences, and the Inhibitor of Apoptosis Protein (IAP) gene and the Innexin 3 gene homologues appear to be present in high abundance in the <it>P. monodon </it>genome.</p> <p>Conclusions</p> <p>The redundancy of various repeat types in the <it>P. monodon </it>genome illustrates its highly repetitive nature. In particular, long and dense microsatellite sequences as well as abundant WSSV-like sequences highlight the uniqueness of genome organization of penaeid shrimp from those of other taxa. These results provide substantial improvement to our current knowledge not only for shrimp but also for marine crustaceans of large genome size.</p

    An alternative splicing program promotes adipose tissue thermogenesis

    No full text
    Alternative pre-mRNA splicing expands the complexity of the transcriptome and controls isoform-specific gene expression. Whether alternative splicing contributes to metabolic regulation is largely unknown. Here we investigated the contribution of alternative splicing to the development of diet-induced obesity. We found that obesity-induced changes in adipocyte gene expression include alternative pre-mRNA splicing. Bioinformatics analysis associated part of this alternative splicing program with sequence specific NOVA splicing factors. This conclusion was confirmed by studies of mice with NOVA deficiency in adipocytes. Phenotypic analysis of the NOVA-deficient mice demonstrated increased adipose tissue thermogenesis and improved glycemia. We show that NOVA proteins mediate a splicing program that suppresses adipose tissue thermogenesis. Together, these data provide quantitative analysis of gene expression at exon-level resolution in obesity and identify a novel mechanism that contributes to the regulation of adipose tissue function and the maintenance of normal glycemia
    corecore