4,011 research outputs found

    Recent progress in the differentiation of bone marrow derived mesenchymal stem cells (BMMSCs) to cardiomyocyte- like cells and their clinical application

    Get PDF
    Bone marrow mesenchymal stem cells (BMMSCs) are one of the cells found in bone marrow stromal. A large number of studies have shown that BMMSCs cannot only differentiate into hematopoietic stromal cells, but can migrate and position themselves in multiple non-hematopoietic organizations and differentiate into the corresponding tissue cells; this characteristic demonstrates their multilineage differentiation potential. In different conditions, BMMSCs can differentiate into bone, cartilage, fat, cardiomyocyte, endothelial cells and nerve cell, etc. Because BMMSCs are easy to acquire, they can proliferate in vitro, have multi-differentiation potential after implantation in vivo, and therefore have wide application prospects for the treatment of cardiovascular disease as the ideal seed cells. This review focuses on the biological characteristics of BMMSCs, the induction and differentiation of cardiomyocyte-like cells and the application in the cardiovascular field.Key words: Bone marrow mesenchymal stem cells (BMMSCs), cardiomyocyte-like cells, cardiovascular disease

    Characterization of carbohydrate fractions and fermentation quality in ensiled alfalfa treated with different additives

    Get PDF
    This experiment was carried out to evaluate the effects of adding fast-sile (FS), previous fermented juice (PFJ), sucrose (S) or fast-sile + sucrose (FS + S) on the fermentation characteristics and carbohydrates fractions of alfalfa silages by the Cornell net carbohydrates and proteins systems (CNCPS). Silages quality were well preserved determined by pH, lactic acid (LA), acetic acid (AA), propionic acid (PA), butyric acid (BA) and (NH3-N, % of TN). Except for the silage with no addition of (CK), all other silages were well preserved. FS + S addition showed the lowest pH and contents of AA, PA, BA, and the highest contents of LA. The contents of WSC (Water soluble carbohydrate) in all alfalfa silages decreased with the extension of ensiling time, especially in the former 15 days and decreased sharply in the first 2 days. The content of sucrose in all alfalfa silages in the residual mono and disaccharides was highest, and the content of fructose was the least. The contents of all these sugars decreased sharply in the first 2 days. The content of hemicellulose decreased during ensiling, while no obvious change on content of cellulose. The content of ADL (acid detergent lignin) in alfalfa silages increased during ensiling. The content of starch in silages reduced rapidly in the former days, and then had not obvious change.Key words: Carbohydrate fractions, alfalfa silage, additives, water soluble carbohydrate (WSC)

    Real-time counting of single electron tunneling through a T-shaped double quantum dot system

    Full text link
    Real-time detection of single electron tunneling through a T-shaped double quantum dot is simulated, based on a Monte Carlo scheme. The double dot is embedded in a dissipative environment and the presence of electrons on the double dot is detected with a nearby quantum point contact. We demonstrate directly the bunching behavior in electron transport, which leads eventually to a super-Poissonian noise. Particularly, in the context of full counting statistics, we investigate the essential difference between the dephasing mechanisms induced by the quantum point contact detection and the coupling to the external phonon bath. A number of intriguing noise features associated with various transport mechanisms are revealed.Comment: 8 pages, 5 figure

    Smad3 promotes cancer progression by inhibiting E4BP4-mediated NK cell development

    Get PDF
    published_or_final_versio

    A Review: Cytochrome P450 in Alcoholic and Non-Alcoholic Fatty Liver Disease

    Get PDF
    Yu-Jie Jiang,1,2 Ye-Ming Cao,1 Yong-Bing Cao,1 Tian-Hua Yan,2 Cheng-Lin Jia,1 Ping He1 1Institute of Vascular Anomalies, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200082, People’s Republic of China; 2Department of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211100, People’s Republic of ChinaCorrespondence: Cheng-Lin Jia; Ping He, Institute of Vascular Anomalies, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200082, People’s Republic of China, Tel/Fax +1 522 136 9352 ; +1 301 693 1191, Email [email protected]; [email protected]: Alcoholic fatty liver disease (FALD) and non-alcoholic fatty liver disease (NAFLD) have similar pathological spectra, both of which are associated with a series of symptoms, including steatosis, inflammation, and fibrosis. These clinical manifestations are caused by hepatic lipid synthesis and metabolism dysregulation and affect human health. Despite having been studied extensively, targeted therapies remain elusive. The Cytochrome P450 (CYP450) family is the most important drug-metabolising enzyme in the body, primarily in the liver. It is responsible for the metabolism of endogenous and exogenous compounds, completing biological transformation. This process is relevant to the occurrence and development of AFLD and NAFLD. In this review, the correlation between CYP450 and liver lipid metabolic diseases is summarised, providing new insights for the treatment of AFLD and NAFLD.Keywords: CYP450, liver metabolism, lipid accumulation, monooxygenases, alcoholic fatty liver disease, non-alcoholic fatty liver diseas

    Community Engagement in Vaccination Promotion: Systematic Review and Meta-Analysis

    Get PDF
    Background: Community engagement plays a vital role in global immunization strategies, offering the potential to overcome vaccination hesitancy and enhance vaccination confidence. Although there is significant backing for community engagement in health promotion, the evidence supporting its effectiveness in vaccination promotion is fragmented and of uncertain quality. Objective: This review aims to systematically examine the effectiveness of different contents and extent of community engagement for promoting vaccination rates. Methods: This study was performed in accordance with the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. A comprehensive and exhaustive literature search was performed in 4 English databases (PubMed, Embase, Web of Science, and Cochrane Library) and 2 Chinese databases (CNKI and Wan Fang) to identify all possible articles. Original research articles applying an experimental study design that investigated the effectiveness of community engagement in vaccination promotion were eligible for inclusion. Two reviewers independently performed the literature search, study selection, quality assessment, and data extraction. Discrepancies were resolved through discussion, with the arbitration of a third reviewer where necessary. Results: A total of 20 articles out of 11,404 records from 2006 to 2021 were retrieved. The studies used various designs: 12 applied single-group pre-post study designs, 5 were cluster randomized controlled trials (RCTs), and 3 were non-RCTs. These studies targeted multiple vaccines, with 8 focusing on children’s immunization, 8 on human papillomavirus vaccine, 3 on hepatitis B virus vaccine, and 1 on COVID-19 vaccine. The meta-analysis revealed significant increases in vaccination rates both in pre-post comparison (rate difference [RD] 0.34, 95% CI 0.21-0.47, I2=99.9%, P<.001) and between-group comparison (RD 0.18, 95% CI 0.07-0.29, I2=98.4%, P<.001). The meta-analysis revealed that participant recruitment had the largest effect size (RD 0.51, 95% CI 0.36-0.67, I2=99.9%, P<.001), followed by intervention development (RD 0.36, 95% CI 0.23-0.50, I2=100.0%, P<.001), intervention implementation (RD 0.35, 95% CI 0.22-0.47, I2=99.8%, P<.001), and data collection (RD 0.34, 95% CI 0.19-0.50, I2=99.8%, P<.001). The meta-analysis indicated that high community engagement extent yielded the largest effect size (RD 0.49, 95% CI 0.17-0.82, I2=100.0%, P<.001), followed by moderate community engagement extent (RD 0.45, 95% CI 0.33-0.58, I2=99.6%, P<.001) and low community engagement extent (RD 0.15, 95% CI 0.05-0.25, I2=99.2%, P<.001). The meta-analysis revealed that “health service support” demonstrated the largest effect sizes (RD 0.45, 95% CI 0.25-0.65, I2=99.9%, P<.001), followed by “health education and discussion” (RD 0.39, 95% CI 0.20-0.58, I2=99.7%, P<.001), “follow-up and reminder” (RD 0.33, 95% CI 0.23-0.42, I2=99.3%, P<.001), and “social marketing campaigns and community mobilization” (RD 0.24, 95% CI 0.06-0.41, I2=99.9%, P<.001). Conclusions: The results of this meta-analysis supported the effectiveness of community engagement in vaccination promotion with variations in terms of engagement contents and extent. Community engagement required a “fit-for-purpose” approach rather than a “one-size-fits-all” approach to maximize the effectiveness of vaccine promotion. Trial Registration: PROSPERO CRD42022339081; https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=33908

    Proteomic profile of KSR1-regulated signalling in response to genotoxic agents in breast cancer

    Get PDF
    Kinase suppressor of Ras 1 (KSR1) has been implicated in tumorigenesis in multiple cancers, including skin, pancreatic and lung carcinomas. However, our recent study revealed a role of KSR1 as a tumour suppressor in breast cancer, the expression of which is potentially correlated with chemotherapy response. Here, we aimed to further elucidate the KSR1-regulated signalling in response to genotoxic agents in breast cancer. Stable isotope labelling by amino acids in cell culture (SILAC) coupled to high-resolution mass spectrometry (MS) was implemented to globally characterise cellular protein levels induced by KSR1 in the presence of doxorubicin or etoposide. The acquired proteomic signature was compared and GO-STRING analysis was subsequently performed to illustrate the activated functional signalling networks. Furthermore, the clinical associations of KSR1 with identified targets and their relevance in chemotherapy response were examined in breast cancer patients. We reveal a comprehensive repertoire of thousands of proteins identified in each dataset and compare the unique proteomic profiles as well as functional connections modulated by KSR1 after doxorubicin (Doxo-KSR1) or etoposide (Etop-KSR1) stimulus. From the up-regulated top hits, several proteins, including STAT1, ISG15 and TAP1 are also found to be positively associated with KSR1 expression in patient samples. Moreover, high KSR1 expression, as well as high abundance of these proteins, is correlated with better survival in breast cancer patients who underwent chemotherapy. In aggregate, our data exemplify a broad functional network conferred by KSR1 with genotoxic agents and highlight its implication in predicting chemotherapy response in breast cancer

    Effect of Prestrain on Hydrogen-Induced Delayed Cracking for Medium Mn Steels

    Get PDF
    Medium Mn steels are a class of the new-generation ultra-high-strength materials used in automotives. However, despite excellent ductility, they may suffer from delayed cracking and thus cause serious concerns. In this study, several medium Mn steels were tested with different prestrain and hydrogen charging conditions. The interaction and synergistic effects of prestrain and hydrogen content on hydrogen-induced delayed cracking behavior are investigated. The threshold stress of hydrogen-induced cracking (HIC) decreased during dynamic hydrogen charging under a constant load. In the process of dynamic hydrogen charging, for M7B and M10B steels, the normalized stress intensity factor σ/σb and the corresponding threshold stress σHIC decreased sharply as prestrain increased. This is because the volume fraction of retained austenite decreased with an increase in prestrain. Similarly, σHIC was reduced and the critical hydrogen content dropped drastically with increasing prestrain. For M7C, the influence of prestrain on threshold stress and hydrogen concentration was less than that of M7B. This is because the different treatment processes leads to a different stability of the retained austenite. By observing the SEM fractographs, the fracture surface of medium Mn steels showed different fracture characteristics, such as dimple fractures and intergranular and transgranular modes

    Microscopic Polarization in Bilayer Graphene

    Full text link
    Bilayer graphene has drawn significant attention due to the opening of a band gap in its low energy electronic spectrum, which offers a promising route to electronic applications. The gap can be either tunable through an external electric field or spontaneously formed through an interaction-induced symmetry breaking. Our scanning tunneling measurements reveal the microscopic nature of the bilayer gap to be very different from what is observed in previous macroscopic measurements or expected from current theoretical models. The potential difference between the layers, which is proportional to charge imbalance and determines the gap value, shows strong dependence on the disorder potential, varying spatially in both magnitude and sign on a microscopic level. Furthermore, the gap does not vanish at small charge densities. Additional interaction-induced effects are observed in a magnetic field with the opening of a subgap when the zero orbital Landau level is placed at the Fermi energy

    Universality of pseudogap and emergent order in lightly doped Mott insulators

    Get PDF
    It is widely believed that high-temperature superconductivity in the cuprates emerges from doped Mott insulators. The physics of the parent state seems deceivingly simple: The hopping of the electrons from site to site is prohibited because their on-site Coulomb repulsion U is larger than the kinetic energy gain t. When doping these materials by inserting a small percentage of extra carriers, the electrons become mobile but the strong correlations from the Mott state are thought to survive; inhomogeneous electronic order, a mysterious pseudogap and, eventually, superconductivity appear. How the insertion of dopant atoms drives this evolution is not known, nor whether these phenomena are mere distractions specific to hole-doped cuprates or represent the genuine physics of doped Mott insulators. Here, we visualize the evolution of the electronic states of (Sr1-xLax)2IrO4, which is an effective spin-1/2 Mott insulator like the cuprates, but is chemically radically different. Using spectroscopic-imaging STM, we find that for doping concentration of x=5%, an inhomogeneous, phase separated state emerges, with the nucleation of pseudogap puddles around clusters of dopant atoms. Within these puddles, we observe the same glassy electronic order that is so iconic for the underdoped cuprates. Further, we illuminate the genesis of this state using the unique possibility to localize dopant atoms on topographs in these samples. At low doping, we find evidence for much deeper trapping of carriers compared to the cuprates. This leads to fully gapped spectra with the chemical potential at mid-gap, which abruptly collapse at a threshold of around 4%. Our results clarify the melting of the Mott state, and establish phase separation and electronic order as generic features of doped Mott insulators.Comment: This version contains the supplementary information and small updates on figures and tex
    corecore