469 research outputs found
The association between socioeconomic status and traditional chinese medicine use among children in Taiwan
<p>Abstract</p> <p>Background</p> <p>Traditional Chinese medicine (TCM) utilization is common in Asian countries. Limited studies are available on the socioeconomic status (SES) associated with TCM use among the pediatric population. We report on the association between SES and TCM use among children and adolescents in Taiwan.</p> <p>Methods</p> <p>A National Health Interview Survey was conducted in Taiwan in 2001 that included 5,971 children and adolescents. We assessed the children's SES using the head of household's education, occupation and income. This information was used to calculate pediatric SES scores, which in turn were divided into quartiles. Children and adolescents who visited TCM in the past month were defined as TCM users.</p> <p>Results</p> <p>Compared to children in the second SES quartile, children in the fourth SES quartile had a higher average number of TCM visits (0.12 vs. 0.06 visits, p = 0.027) and higher TCM use prevalence (5.0% vs. 3.6%, p = 0.024) within the past month. The adjusted odds ratio (OR) for TCM use was higher for children in the fourth SES quartile than for those in the first SES quartile (OR 1.49; 95% confidence interval [CI] 1.02-2.17). The corresponding OR was 2.17 for girls (95% CI 1.24-3.78). The highest-SES girls (aged 10-18 years) were most likely to visit TCM practices (OR 2.47; 95% CI 1.25-4.90).</p> <p>Conclusions</p> <p>Children and adolescents with high SES were more likely to use TCM and especially girls aged 10-18 years. Our findings point to the high use of complementary and alternative medicine among children and adolescents.</p
Constitutive TL1A (TNFSF15) Expression on Lymphoid or Myeloid Cells Leads to Mild Intestinal Inflammation and Fibrosis
TL1A is a member of the TNF superfamily and its expression is increased in the mucosa of inflammatory bowel disease patients. Moreover, a subset of Crohn's disease (CD) patients with the risk TL1A haplotype is associated with elevated TL1A expression and a more severe disease course. To investigate the in vivo role of elevated TL1A expression, we generated two transgenic (Tg) murine models with constitutive Tl1a expression in either lymphoid or myeloid cells. Compared to wildtype (WT) mice, constitutive expression of Tl1a in either lymphoid or myeloid cells showed mild patchy inflammation in the small intestine, which was more prominent in the ileum. In addition, mice with constitutive Tl1a expression exhibited enhanced intestinal and colonic fibrosis compared to WT littermates. The percentage of T cells expressing the gut homing chemokine receptors CCR9 and CCR10 was higher in the Tl1a Tg mice compared to WT littermates. Sustained expression of Tl1A in T cells also lead to increased Foxp3+ Treg cells. T cells or antigen presenting cells (APC) with constitutive expression of Tl1a were found to have a more activated phenotype and mucosal mononuclear cells exhibit enhanced Th1 cytokine activity. These results indicated an important role of TL1A in mucosal T cells and APC function and showed that up-regulation of TL1A expression can promote mucosal inflammation and gut fibrosis
Lipopolysaccharide O1 Antigen Contributes to the Virulence in Klebsiella pneumoniae Causing Pyogenic Liver Abscess
Klebsiella pneumoniae is the common cause of a global emerging infectious disease, community-acquired pyogenic liver abscess (PLA). Capsular polysaccharide (CPS) and lipopolysaccharide (LPS) are critical for this microorganism's ability to spread through the blood and to cause sepsis. While CPS type K1 is an important virulence factor in K. pneumoniae causing PLA, the role of LPS in PLA is not clear. Here, we characterize the role of LPS O antigen in the pathogenesis of K. pneumoniae causing PLA. NTUH-K2044 is a LPS O1 clinical strain; the presence of the O antigen was shown via the presence of 1,3-galactan in the LPS, and of sequences that align with the wb gene cluster, known to produce O-antigen. Serologic analysis of K. pneumoniae clinical isolates demonstrated that the O1 serotype was more prevalent in PLA strains than that in non-tissue-invasive strains (38/42 vs. 9/32, P<0.0001). O1 serotype isolates had a higher frequency of serum resistance, and mutation of the O1 antigen changed serum resistance in K. pneumoniae. A PLA-causing strain of CPS capsular type K2 and LPS serotype O1 (i.e., O1:K2 PLA strain) deleted for the O1 synthesizing genes was profoundly attenuated in virulence, as demonstrated in separate mouse models of septicemia and liver abscess. Immunization of mice with the K2044 magA-mutant (K1− O1) against LPS O1 provided protection against infection with an O1:K2 PLA strain, but not against infection with an O1:K1 PLA strain. Our findings indicate that the O1 antigen of PLA-associated K. pneumoniae contributes to virulence by conveying resistance to serum killing, promoting bacterial dissemination to and colonization of internal organs after the onset of bacteremia, and could be a useful vaccine candidate against infection by an O1:K2 PLA strain
Negative Regulators of Insulin Signaling Revealed in a Genome-Wide Functional Screen
Type 2 diabetes develops due to a combination of insulin resistance and β-cell failure and current therapeutics aim at both of these underlying causes. Several negative regulators of insulin signaling are known and are the subject of drug discovery efforts. We sought to identify novel contributors to insulin resistance and hence potentially novel targets for therapeutic intervention.An arrayed cDNA library encoding 18,441 human transcripts was screened for inhibitors of insulin signaling and revealed known inhibitors and numerous potential novel regulators. The novel hits included proteins of various functional classes such as kinases, phosphatases, transcription factors, and GTPase associated proteins. A series of secondary assays confirmed the relevance of the primary screen hits to insulin signaling and provided further insight into their modes of action.Among the novel hits was PALD (KIAA1274, paladin), a previously uncharacterized protein that when overexpressed led to inhibition of insulin's ability to down regulate a FOXO1A-driven reporter gene, reduced upstream insulin-stimulated AKT phosphorylation, and decreased insulin receptor (IR) abundance. Conversely, knockdown of PALD gene expression resulted in increased IR abundance, enhanced insulin-stimulated AKT phosphorylation, and an improvement in insulin's ability to suppress FOXO1A-driven reporter gene activity. The present data demonstrate that the application of arrayed genome-wide screening technologies to insulin signaling is fruitful and is likely to reveal novel drug targets for insulin resistance and the metabolic syndrome
Rapid, reliable, and reproducible molecular sub-grouping of clinical medulloblastoma samples
The diagnosis of medulloblastoma likely encompasses several distinct entities, with recent evidence for the existence of at least four unique molecular subgroups that exhibit distinct genetic, transcriptional, demographic, and clinical features. Assignment of molecular subgroup through routine profiling of high-quality RNA on expression microarrays is likely impractical in the clinical setting. The planning and execution of medulloblastoma clinical trials that stratify by subgroup, or which are targeted to a specific subgroup requires technologies that can be economically, rapidly, reliably, and reproducibly applied to formalin-fixed paraffin embedded (FFPE) specimens. In the current study, we have developed an assay that accurately measures the expression level of 22 medulloblastoma subgroup-specific signature genes (CodeSet) using nanoString nCounter Technology. Comparison of the nanoString assay with Affymetrix expression array data on a training series of 101 medulloblastomas of known subgroup demonstrated a high concordance (Pearson correlation r = 0.86). The assay was validated on a second set of 130 non-overlapping medulloblastomas of known subgroup, correctly assigning 98% (127/130) of tumors to the appropriate subgroup. Reproducibility was demonstrated by repeating the assay in three independent laboratories in Canada, the United States, and Switzerland. Finally, the nanoString assay could confidently predict subgroup in 88% of recent FFPE cases, of which 100% had accurate subgroup assignment. We present an assay based on nanoString technology that is capable of rapidly, reliably, and reproducibly assigning clinical FFPE medulloblastoma samples to their molecular subgroup, and which is highly suited for future medulloblastoma clinical trials
cAMP/PKA Regulates Osteogenesis, Adipogenesis and Ratio of RANKL/OPG mRNA Expression in Mesenchymal Stem Cells by Suppressing Leptin
BACKGROUND: Mesenchymal stem cells (MSCs) are a pluripotent cell type that can differentiate into adipocytes, osteoblasts and other cells. The reciprocal relationship between adipogenesis and osteogenesis was previously demonstrated; however, the mechanisms remain largely unknown. METHODS AND FINDINGS: We report that activation of PKA by 3-isobutyl-1 methyl xanthine (IBMX) and forskolin enhances adipogenesis, the gene expression of PPARgamma2 and LPL, and downregulates the gene expression of Runx2 and osteopontin, markers of osteogenesis. PKA activation also decreases the ratio of Receptor Activator of the NF-kappaB Ligand to Osteoprotegerin (RANKL/OPG) gene expression - the key factors of osteoclastogenesis. All these effects are mediated by the cAMP/PKA/CREB pathway by suppressing leptin, and may contribute to PKA stimulators-induced in vivo bone loss in developing zebrafish. CONCLUSIONS: Using MSCs, the center of a newly proposed bone metabolic unit, we identified cAMP/PKA signaling, one of the many signaling pathways that regulate bone homeostasis via controlling cyto-differentiation of MSCs and altering RANKL/OPG gene expression
- …