135 research outputs found

    The glycine cleavage system in embryonic brain development

    Get PDF
    The glycine cleavage system (GCS) is a multi-enzyme complex localised in the mitochondria and serves as the main catabolic pathway for glycine. It contributes to supply of one-carbon units into folate one-carbon metabolism (FOCM) which utilises them for vital processes such as purines and thymidylate biosynthesis and methylation reactions. This thesis focuses on the role of glycine decarboxylase (Gldc), a member of the GCS, in embryonic development of the brain. It utilises two loss-of-function mouse models for Gldc which were found to exhibit two distinct disease phenotypes: non-ketotic hyperglycinemia (NKH) and neural tube defects (NTDs). The aims of this project are to investigate what effects GCS deficiency has on FOCM, the developmental mechanisms underlying NTDs caused by loss of Gldc expression, and suitability of the Gldc mice models as animal models for classical NKH. NKH is a rare metabolic disease caused by mutations of GCS genes (mainly GLDC) and characterised by accumulation of glycine in body fluids, resulting in severe neurological dysfunction and poor survival. Gldc-deficient mice exhibited features of NKH including elevated glycine, early post-natal lethality, and hydrocephalus. Enlargement of the brain ventricles was found to already be present at late-foetal stage, while glycine levels in whole embryos were already elevated shortly after neurulation. Gldc-deficient embryos also displayed NTDs, a common birth defect of the central nervous system that result from failure of the neural tube to close. Gldc-deficient embryos displayed abnormal folate metabolism, growth retardation and reduced cell proliferation. Supplementation with one-carbon units through dietary means was able to normalise folate profiles, completely rescue the NTDs, and normalise proliferation and growth in Gldc-deficient embryos. Diet-induced folate deficiency and interactions with the Mthfr mutation (which results in a methylation defect) did not exacerbate the NTDs caused by the Gldc mutation. This study provides the first mouse model for classical NKH and suggests that the pathology of NKH begins earlier in development than suspected. It also suggests that Gldc deficiency causes NTDs by reducing the supply of glycine-derived, mitochondrial one-carbon units for FOCM reactions

    Glycine decarboxylase deficiency causes neural tube defects and features of non-ketotic hyperglycinemia in mice.

    Get PDF
    Glycine decarboxylase (GLDC) acts in the glycine cleavage system to decarboxylate glycine and transfer a one-carbon unit into folate one-carbon metabolism. GLDC mutations cause a rare recessive disease non-ketotic hyperglycinemia (NKH). Mutations have also been identified in patients with neural tube defects (NTDs); however, the relationship between NKH and NTDs is unclear. We show that reduced expression of Gldc in mice suppresses glycine cleavage system activity and causes two distinct disease phenotypes. Mutant embryos develop partially penetrant NTDs while surviving mice exhibit post-natal features of NKH including glycine accumulation, early lethality and hydrocephalus. In addition to elevated glycine, Gldc disruption also results in abnormal tissue folate profiles, with depletion of one-carbon-carrying folates, as well as growth retardation and reduced cellular proliferation. Formate treatment normalizes the folate profile, restores embryonic growth and prevents NTDs, suggesting that Gldc deficiency causes NTDs through limiting supply of one-carbon units from mitochondrial folate metabolism

    Suboptimal Activation of Antigen-Specific CD4+ Effector Cells Enables Persistence of M. tuberculosis In Vivo

    Get PDF
    Adaptive immunity to Mycobacterium tuberculosis controls progressive bacterial growth and disease but does not eradicate infection. Among CD4+ T cells in the lungs of M. tuberculosis-infected mice, we observed that few produced IFN-γ without ex vivo restimulation. Therefore, we hypothesized that one mechanism whereby M. tuberculosis avoids elimination is by limiting activation of CD4+ effector T cells at the site of infection in the lungs. To test this hypothesis, we adoptively transferred Th1-polarized CD4+ effector T cells specific for M. tuberculosis Ag85B peptide 25 (P25TCRTh1 cells), which trafficked to the lungs of infected mice and exhibited antigen-dependent IFN-γ production. During the early phase of infection, ∼10% of P25TCRTh1 cells produced IFN-γ in vivo; this declined to <1% as infection progressed to chronic phase. Bacterial downregulation of fbpB (encoding Ag85B) contributed to the decrease in effector T cell activation in the lungs, as a strain of M. tuberculosis engineered to express fbpB in the chronic phase stimulated P25TCRTh1 effector cells at higher frequencies in vivo, and this resulted in CD4+ T cell-dependent reduction of lung bacterial burdens and prolonged survival of mice. Administration of synthetic peptide 25 alone also increased activation of endogenous antigen-specific effector cells and reduced the bacterial burden in the lungs without apparent host toxicity. These results indicate that CD4+ effector T cells are activated at suboptimal frequencies in tuberculosis, and that increasing effector T cell activation in the lungs by providing one or more epitope peptides may be a successful strategy for TB therapy

    Phosphorylation of SOS1 on tyrosine 1196 promotes its RAC GEF activity and contributes to BCR-ABL leukemogenesis

    Get PDF
    Son of Sevenless 1 (SOS1) is a dual guanine nucleotide exchange factor (GEF) that activates the small GTPases RAC and RAS. Although the molecular mechanisms of RAS GEF catalysis have been unveiled, how SOS1 acquires RAC GEF activity and what is the physio-pathological relevance of this activity is much less understood. Here we show that SOS1 is tyrosine phosphorylated on Y1196 by ABL. Phosphorylation of Y1196 controls SOS1 inter-molecular interaction, is required to promote the exchange of nucleotides on RAC in vitro and for platelet-derived growth factor (PDGF) activation of RAC- and RAC-dependent actin remodeling and cell migration. SOS1 is also phosphorylated on Y1196 by BCR-ABL in chronic myelogenous leukemic cells. Importantly, in these cells, SOS1 is required for BCR-ABL-mediated activation of RAC, cell proliferation and transformation in vitro and in a xenograft mouse model. Finally, genetic removal of Sos1 in the bone marrow-derived cells (BMDCs) from Sos1fl/flmice and infected with BCR-ABL causes a significant delay in the onset of leukemogenesis once BMDCs are injected into recipient, lethally irradiated mice. Thus, SOS1 is required for full transformation and critically contribute to the leukemogenic potential of BCR-ABL

    Transplanted Human Amniotic Membrane-Derived Mesenchymal Stem Cells Ameliorate Carbon Tetrachloride-Induced Liver Cirrhosis in Mouse

    Get PDF
    BACKGROUND: Human amniotic membrane-derived mesenchymal stem cells (hAMCs) have the potential to reduce heart and lung fibrosis, but whether could reduce liver fibrosis remains largely unknown. METHODOLOGY/PRINCIPAL FINDINGS: Hepatic cirrhosis model was established by infusion of CClβ‚„ (1 ml/kg body weight twice a week for 8 weeks) in immunocompetent C57Bl/6J mice. hAMCs, isolated from term delivered placenta, were infused into the spleen at 4 weeks after mice were challenged with CClβ‚„. Control mice received only saline infusion. Animals were sacrificed at 4 weeks post-transplantation. Blood analysis was performed to evaluate alanine aminotransferase (ALT) and aspartate aminotransferase (AST). Histological analysis of the livers for fibrosis, hepatic stellate cells activation, hepatocyte apoptosis, proliferation and senescence were performed. The donor cell engraftment was assessed using immunofluorescence and polymerase chain reaction. The areas of hepatic fibrosis were reduced (6.2%Β±2.1 vs. control 9.6%Β±1.7, p<0.05) and liver function parameters (ALT 539.6Β±545.1 U/dl, AST 589.7Β±342.8 U/dl,vs. control ALT 139.1Β±138.3 U/dl, p<0.05 and AST 212.3Β±110.7 U/dl, p<0.01) were markedly ameliorated in the hAMCs group compared to control group. The transplantation of hAMCs into liver-fibrotic mice suppressed activation of hepatic stellate cells, decreased hepatocyte apoptosis and promoted liver regeneration. More interesting, hepatocyte senescence was depressed significantly in hAMCs group compared to control group. Immunofluorescence and polymerase chain reaction revealed that hAMCs engraftment into host livers and expressed the hepatocyte-specific markers, human albumin and Ξ±-fetoproteinran. CONCLUSIONS/SIGNIFICANCE: The transplantation of hAMCs significantly decreased the fibrosis formation and progression of CClβ‚„-induced cirrhosis, providing a new approach for the treatment of fibrotic liver disease

    Drosophila cbl Is Essential for Control of Cell Death and Cell Differentiation during Eye Development

    Get PDF
    Activation of cell surface receptors transduces extracellular signals into cellular responses such as proliferation, differentiation and survival. However, as important as the activation of these receptors is their appropriate spatial and temporal down-regulation for normal development and tissue homeostasis. The Cbl family of E3-ubiquitin ligases plays a major role for the ligand-dependent inactivation of receptor tyrosine kinases (RTKs), most notably the Epidermal Growth Factor Receptor (EGFR) through ubiquitin-mediated endocytosis and lysosomal degradation.Here, we report the mutant phenotypes of Drosophila cbl (D-cbl) during eye development. D-cbl mutants display overgrowth, inhibition of apoptosis, differentiation defects and increased ommatidial spacing. Using genetic interaction and molecular markers, we show that most of these phenotypes are caused by increased activity of the Drosophila EGFR. Our genetic data also indicate a critical role of ubiquitination for D-cbl function, consistent with biochemical models.These data may provide a mechanistic model for the understanding of the oncogenic activity of mammalian cbl genes

    A study of alterations in DNA epigenetic modifications (5mC and 5hmC) and gene expression influenced by simulated microgravity in human lymphoblastoid cells

    Get PDF
    Cells alter their gene expression in response to exposure to various environmental changes. Epigenetic mechanisms such as DNA methylation are believed to regulate the alterations in gene expression patterns. In vitro and in vivo studies have documented changes in cellular proliferation, cytoskeletal remodeling, signal transduction, bone mineralization and immune deficiency under the influence of microgravity conditions experienced in space. However microgravity induced changes in the epigenome have not been well characterized. In this study we have used Next-generation Sequencing (NGS) to profile ground-based β€œsimulated” microgravity induced changes on DNA methylation (5-methylcytosine or 5mC), hydroxymethylation (5-hydroxymethylcytosine or 5hmC), and simultaneous gene expression in cultured human lymphoblastoid cells. Our results indicate that simulated microgravity induced alterations in the methylome (~60% of the differentially methylated regions or DMRs are hypomethylated and ~92% of the differentially hydroxymethylated regions or DHMRs are hyperhydroxymethylated). Simulated microgravity also induced differential expression in 370 transcripts that were associated with crucial biological processes such as oxidative stress response, carbohydrate metabolism and regulation of transcription. While we were not able to obtain any global trend correlating the changes of methylation/ hydroxylation with gene expression, we have been able to profile the simulated microgravity induced changes of 5mC over some of the differentially expressed genes that includes five genes undergoing differential methylation over their promoters and twenty five genes undergoing differential methylation over their gene-bodies. To the best of our knowledge, this is the first NGS-based study to profile epigenomic patterns induced by short time exposure of simulated microgravity and we believe that our findings can be a valuable resource for future explorations

    Mechanical properties measured by Atomic Force Microscopy define health biomarkers in ageing C. elegans

    Get PDF
    Genetic and environmental factors are key drivers regulating organismal lifespan but how these impact healthspan is less well understood. Techniques capturing biomechanical properties of tissues on a nano-scale level are providing new insights into disease mechanisms. Here, we apply Atomic Force Microscopy (AFM) to quantitatively measure the change in biomechanical properties associated with ageing Caenorhabditis elegans in addition to capturing high-resolution topographical images of cuticle senescence. We show that distinct dietary restriction regimes and genetic pathways that increase lifespan lead to radically different healthspan outcomes. Hence, our data support the view that prolonged lifespan does not always coincide with extended healthspan. Importantly, we identify the insulin signalling pathway in C. elegans and interventions altering bacterial physiology as increasing both lifespan and healthspan. Overall, AFM provides a highly sensitive technique to measure organismal biomechanical fitness and delivers an approach to screen for health-improving conditions, an essential step towards healthy ageing

    Myocardial tagging by Cardiovascular Magnetic Resonance: evolution of techniques--pulse sequences, analysis algorithms, and applications

    Get PDF
    Cardiovascular magnetic resonance (CMR) tagging has been established as an essential technique for measuring regional myocardial function. It allows quantification of local intramyocardial motion measures, e.g. strain and strain rate. The invention of CMR tagging came in the late eighties, where the technique allowed for the first time for visualizing transmural myocardial movement without having to implant physical markers. This new idea opened the door for a series of developments and improvements that continue up to the present time. Different tagging techniques are currently available that are more extensive, improved, and sophisticated than they were twenty years ago. Each of these techniques has different versions for improved resolution, signal-to-noise ratio (SNR), scan time, anatomical coverage, three-dimensional capability, and image quality. The tagging techniques covered in this article can be broadly divided into two main categories: 1) Basic techniques, which include magnetization saturation, spatial modulation of magnetization (SPAMM), delay alternating with nutations for tailored excitation (DANTE), and complementary SPAMM (CSPAMM); and 2) Advanced techniques, which include harmonic phase (HARP), displacement encoding with stimulated echoes (DENSE), and strain encoding (SENC). Although most of these techniques were developed by separate groups and evolved from different backgrounds, they are in fact closely related to each other, and they can be interpreted from more than one perspective. Some of these techniques even followed parallel paths of developments, as illustrated in the article. As each technique has its own advantages, some efforts have been made to combine different techniques together for improved image quality or composite information acquisition. In this review, different developments in pulse sequences and related image processing techniques are described along with the necessities that led to their invention, which makes this article easy to read and the covered techniques easy to follow. Major studies that applied CMR tagging for studying myocardial mechanics are also summarized. Finally, the current article includes a plethora of ideas and techniques with over 300 references that motivate the reader to think about the future of CMR tagging
    • …
    corecore