107 research outputs found

    The role for osmotic agents in children with acute encephalopathies: a systematic review

    Get PDF
    Background: Raised intracranial pressure (ICP) is known to complicate both traumatic and non-traumatic encephalopathies. It impairs cerebral perfusion and may cause death due to global ischaemia and intracranial herniation. Osmotic agents are widely used to control ICP. In children, guidelines for their use are mainly guided by adult studies. We conducted this review to determine the current evidence of the effectiveness of osmotic agents and their effect on resolution of coma and outcome in children with acute encephalopathy.Methods: We searched several databases for published and unpublished studies in English and French languages, between January 1966 and March 2009. We considered studies on the use of osmotic agents in children aged between 0 and 16 years with acute encephalopathies. We examined reduction in intracranial pressure, time to resolution of coma, and occurrence of neurological sequelae and death.Results: We identified four randomized controlled trials, three prospective studies, two retrospective studies and one case report. Hypertonic saline (HS) achieved greater reduction in intracranial pressure (ICP) compared to mannitol and other fluids; normal saline or ringer's lactate. This effect was sustained for longer when it was given as continuous infusion. Boluses of glycerol and mannitol achieved transient reduction in ICP. Oral glycerol was associated with lower mortality and neurological sequelae when compared to placebo in children with acute bacterial meningitis. HS was associated with lower mortality when compared to mannitol in children with non-traumatic encephalopathies.Conclusion: HS appears to achieve a greater reduction in ICP than other osmotic agents. Oral glycerol seems to improve outcome among children with acute bacterial meningitis. A sustained reduction in ICP is desirable and could be achieved by modifying the modes and rates of administration of these osmotic agents, but these factors need further investigation

    The correlation and level of agreement between end-tidal and blood gas pCO2 in children with respiratory distress: a retrospective analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To investigate the correlation and level of agreement between end-tidal carbon dioxide (EtCO<sub>2</sub>) and blood gas pCO<sub>2 </sub>in non-intubated children with moderate to severe respiratory distress.</p> <p>Methods</p> <p>Retrospective study of patients admitted to an intermediate care unit (InCU) at a tertiary care center over a 20-month period with moderate to severe respiratory distress secondary to asthma, bronchiolitis, or pneumonia. Patients with venous pCO<sub>2 </sub>(vpCO<sub>2</sub>) and EtCO<sub>2 </sub>measurements within 10 minutes of each other were eligible for inclusion. Patients with cardiac disease, chronic pulmonary disease, poor tissue perfusion, or metabolic abnormalities were excluded.</p> <p>Results</p> <p>Eighty EtCO<sub>2</sub>-vpCO<sub>2 </sub>paired values were available from 62 patients. The mean ± <smcaps>SD</smcaps> for EtCO<sub>2 </sub>and vpCO<sub>2 </sub>was 35.7 ± 10.1 mmHg and 39.4 ± 10.9 mmHg respectively. EtCO<sub>2 </sub>and vpCO<sub>2 </sub>values were highly correlated (r = 0.90, p < 0.0001). The correlations for asthma, bronchiolitis and pneumonia were 0.74 (p < 0.0001), 0.83 (p = 0.0002) and 0.98 (p < 0.0001) respectively. The mean bias ± <smcaps>SD</smcaps> between EtCO<sub>2 </sub>and vpCO<sub>2 </sub>was -3.68 ± 4.70 mmHg. The 95% level of agreement ranged from -12.88 to +5.53 mmHg. EtCO<sub>2 </sub>was found to be more accurate when vpCO<sub>2 </sub>was 35 mmHg or lower.</p> <p>Conclusion</p> <p>EtCO<sub>2 </sub>is correlated highly with vpCO<sub>2 </sub>in non-intubated pediatric patients with moderate to severe respiratory distress across respiratory illnesses. Although the level of agreement between the two methods precludes the overall replacement of blood gas evaluation, EtCO<sub>2 </sub>monitoring remains a useful, continuous, non-invasive measure in the management of non-intubated children with moderate to severe respiratory distress.</p

    Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock, 2012

    Get PDF
    OBJECTIVE: To provide an update to the "Surviving Sepsis Campaign Guidelines for Management of Severe Sepsis and Septic Shock," last published in 2008. DESIGN: A consensus committee of 68 international experts representing 30 international organizations was convened. Nominal groups were assembled at key international meetings (for those committee members attending the conference). A formal conflict of interest policy was developed at the onset of the process and enforced throughout. The entire guidelines process was conducted independent of any industry funding. A stand-alone meeting was held for all subgroup heads, co- and vice-chairs, and selected individuals. Teleconferences and electronic-based discussion among subgroups and among the entire committee served as an integral part of the development. METHODS: The authors were advised to follow the principles of the Grading of Recommendations Assessment, Development and Evaluation (GRADE) system to guide assessment of quality of evidence from high (A) to very low (D) and to determine the strength of recommendations as strong (1) or weak (2). The potential drawbacks of making strong recommendations in the presence of low-quality evidence were emphasized. Recommendations were classified into three groups: (1) those directly targeting severe sepsis; (2) those targeting general care of the critically ill patient and considered high priority in severe sepsis; and (3) pediatric considerations. RESULTS: Key recommendations and suggestions, listed by category, include: early quantitative resuscitation of the septic patient during the first 6 h after recognition (1C); blood cultures before antibiotic therapy (1C); imaging studies performed promptly to confirm a potential source of infection (UG); administration of broad-spectrum antimicrobials therapy within 1 h of the recognition of septic shock (1B) and severe sepsis without septic shock (1C) as the goal of therapy; reassessment of antimicrobial therapy daily for de-escalation, when appropriate (1B); infection source control with attention to the balance of risks and benefits of the chosen method within 12 h of diagnosis (1C); initial fluid resuscitation with crystalloid (1B) and consideration of the addition of albumin in patients who continue to require substantial amounts of crystalloid to maintain adequate mean arterial pressure (2C) and the avoidance of hetastarch formulations (1B); initial fluid challenge in patients with sepsis-induced tissue hypoperfusion and suspicion of hypovolemia to achieve a minimum of 30 mL/kg of crystalloids (more rapid administration and greater amounts of fluid may be needed in some patients (1C); fluid challenge technique continued as long as hemodynamic improvement is based on either dynamic or static variables (UG); norepinephrine as the first-choice vasopressor to maintain mean arterial pressure ≥65 mmHg (1B); epinephrine when an additional agent is needed to maintain adequate blood pressure (2B); vasopressin (0.03 U/min) can be added to norepinephrine to either raise mean arterial pressure to target or to decrease norepinephrine dose but should not be used as the initial vasopressor (UG); dopamine is not recommended except in highly selected circumstances (2C); dobutamine infusion administered or added to vasopressor in the presence of (a) myocardial dysfunction as suggested by elevated cardiac filling pressures and low cardiac output, or (b) ongoing signs of hypoperfusion despite achieving adequate intravascular volume and adequate mean arterial pressure (1C); avoiding use of intravenous hydrocortisone in adult septic shock patients if adequate fluid resuscitation and vasopressor therapy are able to restore hemodynamic stability (2C); hemoglobin target of 7-9 g/dL in the absence of tissue hypoperfusion, ischemic coronary artery disease, or acute hemorrhage (1B); low tidal volume (1A) and limitation of inspiratory plateau pressure (1B) for acute respiratory distress syndrome (ARDS); application of at least a minimal amount of positive end-expiratory pressure (PEEP) in ARDS (1B); higher rather than lower level of PEEP for patients with sepsis-induced moderate or severe ARDS (2C); recruitment maneuvers in sepsis patients with severe refractory hypoxemia due to ARDS (2C); prone positioning in sepsis-induced ARDS patients with a PaO (2)/FiO (2) ratio of ≤100 mm Hg in facilities that have experience with such practices (2C); head-of-bed elevation in mechanically ventilated patients unless contraindicated (1B); a conservative fluid strategy for patients with established ARDS who do not have evidence of tissue hypoperfusion (1C); protocols for weaning and sedation (1A); minimizing use of either intermittent bolus sedation or continuous infusion sedation targeting specific titration endpoints (1B); avoidance of neuromuscular blockers if possible in the septic patient without ARDS (1C); a short course of neuromuscular blocker (no longer than 48 h) for patients with early ARDS and a PaO (2)/FI O (2) 180 mg/dL, targeting an upper blood glucose ≤180 mg/dL (1A); equivalency of continuous veno-venous hemofiltration or intermittent hemodialysis (2B); prophylaxis for deep vein thrombosis (1B); use of stress ulcer prophylaxis to prevent upper gastrointestinal bleeding in patients with bleeding risk factors (1B); oral or enteral (if necessary) feedings, as tolerated, rather than either complete fasting or provision of only intravenous glucose within the first 48 h after a diagnosis of severe sepsis/septic shock (2C); and addressing goals of care, including treatment plans and end-of-life planning (as appropriate) (1B), as early as feasible, but within 72 h of intensive care unit admission (2C). Recommendations specific to pediatric severe sepsis include: therapy with face mask oxygen, high flow nasal cannula oxygen, or nasopharyngeal continuous PEEP in the presence of respiratory distress and hypoxemia (2C), use of physical examination therapeutic endpoints such as capillary refill (2C); for septic shock associated with hypovolemia, the use of crystalloids or albumin to deliver a bolus of 20 mL/kg of crystalloids (or albumin equivalent) over 5-10 min (2C); more common use of inotropes and vasodilators for low cardiac output septic shock associated with elevated systemic vascular resistance (2C); and use of hydrocortisone only in children with suspected or proven "absolute"' adrenal insufficiency (2C). CONCLUSIONS: Strong agreement existed among a large cohort of international experts regarding many level 1 recommendations for the best care of patients with severe sepsis. Although a significant number of aspects of care have relatively weak support, evidence-based recommendations regarding the acute management of sepsis and septic shock are the foundation of improved outcomes for this important group of critically ill patients

    Amitraz poisoning, an emerging problem: epidemiology, clinical features, management, and preventive strategies

    No full text
    Background: Amitraz is a pharmaceutical, veterinary, and agricultural product which is used worldwide under numerous generic names as an acaricide and insecticide. Because of its widespread use amitraz poisoning has come emerged as a cause of childhood poisoning during the past decade, particularly more in certain countries such as Turkey. Aims and Methods: To report the clinical features, the management, and the preventive strategies of amitraz poisoning in nine children, and review the previously reported 137 cases in humans. Results: Five male and four female children aged 10 months to 8 years were admitted to our department. The estimated ingested dose ranged between 89.2 and 163 mg/kg and estimated time from ingestion to presentation was 30–120 minutes. The initial signs and symptoms were impaired consciousness, drowsiness, vomiting, disorientation, miosis, mydriasis, hypotension, bradycardia, tachypnoea, hypothermia, and generalised seizures. Hyperglycaemia, glycosuria, and minimal increase in transaminase levels were observed. None required mechanical ventilation. CNS depression resolved spontaneously within 4–28 hours in all. The length of hospital stay was two to three days; all had a good outcome. Conclusion: This review details preventive measures and management strategies of amitraz poisoning, including the importance of following patients closely in the intensive care unit, monitoring their respiratory, cardiovascular, and central nervous systems since they may occasionally experience serious cardiopulmonary side effects

    Surfactant therapy in acute respiratory distress syndrome due to hydrocarbon aspiration

    No full text
    PubMedID: 19421666Hydrocarbon aspiration causes acute lung injury, which may lead to acute respiratory distress syndrome. Surfactant has been shown to be beneficial in experimentally-induced hydrocarbon-associated acute respiratory distress syndrome. However, there has not been a clinical study evaluating the effect of surfactant application on hydrocarbon aspiration in humans. We report a 17-month-old boy with acute respiratory distress syndrome due to hydrocarbon aspiration and was successfully treated with surfactant application
    • …
    corecore