321 research outputs found

    Effect of various normalization methods on Applied Biosystems expression array system data

    Get PDF
    BACKGROUND: DNA microarray technology provides a powerful tool for characterizing gene expression on a genome scale. While the technology has been widely used in discovery-based medical and basic biological research, its direct application in clinical practice and regulatory decision-making has been questioned. A few key issues, including the reproducibility, reliability, compatibility and standardization of microarray analysis and results, must be critically addressed before any routine usage of microarrays in clinical laboratory and regulated areas can occur. In this study we investigate some of these issues for the Applied Biosystems Human Genome Survey Microarrays. RESULTS: We analyzed the gene expression profiles of two samples: brain and universal human reference (UHR), a mixture of RNAs from 10 cancer cell lines, using the Applied Biosystems Human Genome Survey Microarrays. Five technical replicates in three different sites were performed on the same total RNA samples according to manufacturer's standard protocols. Five different methods, quantile, median, scale, VSN and cyclic loess were used to normalize AB microarray data within each site. 1,000 genes spanning a wide dynamic range in gene expression levels were selected for real-time PCR validation. Using the TaqMan(® )assays data set as the reference set, the performance of the five normalization methods was evaluated focusing on the following criteria: (1) Sensitivity and reproducibility in detection of expression; (2) Fold change correlation with real-time PCR data; (3) Sensitivity and specificity in detection of differential expression; (4) Reproducibility of differentially expressed gene lists. CONCLUSION: Our results showed a high level of concordance between these normalization methods. This is true, regardless of whether signal, detection, variation, fold change measurements and reproducibility were interrogated. Furthermore, we used TaqMan(® )assays as a reference, to generate TPR and FDR plots for the various normalization methods across the assay range. Little impact is observed on the TP and FP rates in detection of differentially expressed genes. Additionally, little effect was observed by the various normalization methods on the statistical approaches analyzed which indicates a certain robustness of the analysis methods currently in use in the field, particularly when used in conjunction with the Applied Biosystems Gene Expression System

    Parallel multiplicity and error discovery rate (EDR) in microarray experiments

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In microarray gene expression profiling experiments, differentially expressed genes (DEGs) are detected from among tens of thousands of genes on an array using statistical tests. It is important to control the number of false positives or errors that are present in the resultant DEG list. To date, more than 20 different multiple test methods have been reported that compute overall Type I error rates in microarray experiments. However, these methods share the following dilemma: they have low power in cases where only a small number of DEGs exist among a large number of total genes on the array.</p> <p>Results</p> <p>This study contrasts parallel multiplicity of objectively related tests against the traditional simultaneousness of subjectively related tests and proposes a new assessment called the Error Discovery Rate (EDR) for evaluating multiple test comparisons in microarray experiments. Parallel multiple tests use only the negative genes that parallel the positive genes to control the error rate; while simultaneous multiple tests use the total unchanged gene number for error estimates. Here, we demonstrate that the EDR method exhibits improved performance over other methods in specificity and sensitivity in testing expression data sets with sequence digital expression confirmation, in examining simulation data, as well as for three experimental data sets that vary in the proportion of DEGs. The EDR method overcomes a common problem of previous multiple test procedures, namely that the Type I error rate detection power is low when the total gene number used is large but the DEG number is small.</p> <p>Conclusions</p> <p>Microarrays are extensively used to address many research questions. However, there is potential to improve the sensitivity and specificity of microarray data analysis by developing improved multiple test comparisons. This study proposes a new view of multiplicity in microarray experiments and the EDR provides an alternative multiple test method for Type I error control in microarray experiments.</p

    Genome Expression Profile Analysis of the Immature Maize Embryo during Dedifferentiation

    Get PDF
    Maize is one of the most important cereal crops worldwide and one of the primary targets of genetic manipulation, which provides an excellent way to promote its production. However, the obvious difference of the dedifferentiation frequency of immature maize embryo among various genotypes indicates that its genetic transformation is dependence on genotype and immature embryo-derived undifferentiated cells. To identify important genes and metabolic pathways involved in forming of embryo-derived embryonic calli, in this study, DGE (differential gene expression) analysis was performed on stages I, II, and III of maize inbred line 18-599R and corresponding control during the process of immature embryo dedifferentiation. A total of ∼21 million cDNA tags were sequenced, and 4,849,453, 5,076,030, 4,931,339, and 5,130,573 clean tags were obtained in the libraries of the samples and the control, respectively. In comparison with the control, 251, 324 and 313 differentially expressed genes (DEGs) were identified in the three stages with more than five folds, respectively. Interestingly, it is revealed that all the DEGs are related to metabolism, cellular process, and signaling and information storage and processing functions. Particularly, the genes involved in amino acid and carbohydrate transport and metabolism, cell wall/membrane/envelope biogenesis and signal transduction mechanism have been significantly changed during the dedifferentiation. To our best knowledge, this study is the first genome-wide effort to investigate the transcriptional changes in dedifferentiation immature maize embryos and the identified DEGs can serve as a basis for further functional characterization

    Metabolic analysis of the interaction between plants and herbivores

    Get PDF
    Insect herbivores by necessity have to deal with a large arsenal of plant defence metabolites. The levels of defence compounds may be increased by insect damage. These induced plant responses may also affect the metabolism and performance of successive insect herbivores. As the chemical nature of induced responses is largely unknown, global metabolomic analyses are a valuable tool to gain more insight into the metabolites possibly involved in such interactions. This study analyzed the interaction between feral cabbage (Brassica oleracea) and small cabbage white caterpillars (Pieris rapae) and how previous attacks to the plant affect the caterpillar metabolism. Because plants may be induced by shoot and root herbivory, we compared shoot and root induction by treating the plants on either plant part with jasmonic acid. Extracts of the plants and the caterpillars were chemically analysed using Ultra Performance Liquid Chromatography/Time of Flight Mass Spectrometry (UPLCT/MS). The study revealed that the levels of three structurally related coumaroylquinic acids were elevated in plants treated on the shoot. The levels of these compounds in plants and caterpillars were highly correlated: these compounds were defined as the ‘metabolic interface’. The role of these metabolites could only be discovered using simultaneous analysis of the plant and caterpillar metabolomes. We conclude that a metabolomics approach is useful in discovering unexpected bioactive compounds involved in ecological interactions between plants and their herbivores and higher trophic levels.

    Measurement invariance of the Internet Gaming Disorder Scale–Short-Form (IGDS9-SF) between Australia, the USA, and the UK

    Get PDF
    The Internet Gaming Disorder Scale-Short-Form (IGDS9-SF) is widely used to assess Internet Gaming Disorder behaviors. Investigating cultural limitations and implications in its applicability is imperative. One way to evaluate the cross-cultural feasibility of the measure is through measurement invariance analysis. The present study used Multigroup Confirmatory Factor Analysis (MGCFA) to examine the IGDS9-SF measurement invariance across gamers from Australia, the United States of America (USA), and the United Kingdom (UK). To accomplish this, 171 Australian, 463 USA, and 281 UK gamers completed the IGDS9-SF. Although results supported the one-factor structure of the IGD construct, they indicated cross-country variations in the strength of the relationships between the indicators and their respective factor (i.e., non-invariant loadings of items 1, 2, 5), and that the same scores may not always indicate the same level of IGD severity across the three groups (i.e., non-invariant intercepts for items 1, 5, 7, 9)

    BATS: a Bayesian user-friendly software for Analyzing Time Series microarray experiments

    Get PDF
    BATS is a user-friendly software for Bayesian Analysis of Time Series microarray experiments based on the novel, truly functional and fully Bayesian approach proposed in Angelini et at. (2006). The software is specifically designed for time series data. It allows an user to automatically identify and rank differentially expressed genes and to estimate their expression profiles. BATS successfully manages various technical difficulties which arise in microarray time-course experiments, such as a small number of observations, non-uniform sampling intervals, and presence of missing or multiple data. BATS can carry out analysis with both simulated and real experimental data. It also handles data from different platforms. 1 Availability: BATS is written in Matlab and executable in Windows (Macintosh and Linux version are currently under development). It is freely available upon request from the authors.

    The CD4+ T-cell transcriptome and serum IgE in asthma: IL17RB and the role of sex

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The relationships between total serum IgE levels and gene expression patterns in peripheral blood CD4+ T cells (in all subjects and within each sex specifically) are not known.</p> <p>Methods</p> <p>Peripheral blood CD4+ T cells from 223 participants from the Childhood Asthma Management Program (CAMP) with simultaneous measurement of IgE. Total RNA was isolated, and expression profiles were generated with Illumina HumanRef8 v2 BeadChip arrays. Modeling of the relationship between genome-wide gene transcript levels and IgE levels was performed in all subjects, and stratified by sex.</p> <p>Results</p> <p>Among all subjects, significant evidence for association between gene transcript abundance and IgE was identified for a single gene, the interleukin 17 receptor B (IL17RB), explaining 12% of the variance (r<sup>2</sup>) in IgE measurement (p value = 7 × 10<sup>-7</sup>, 9 × 10<sup>-3 </sup>after adjustment for multiple testing). Sex stratified analyses revealed that the correlation between IL17RB and IgE was restricted to males only (r<sup>2 </sup>= 0.19, p value = 8 × 10<sup>-8</sup>; test for sex-interaction p < 0.05). Significant correlation between gene transcript abundance and IgE level was not found in females. Additionally we demonstrated substantial sex-specific differences in IgE when considering multi-gene models, and in canonical pathway analyses of IgE level.</p> <p>Conclusions</p> <p>Our results indicate that IL17RB may be the only gene expressed in CD4+ T cells whose transcript measurement is correlated with the variation in IgE level in asthmatics. These results provide further evidence sex may play a role in the genomic regulation of IgE.</p

    Detection of Gene Expression in an Individual Cell Type within a Cell Mixture Using Microarray Analysis

    Get PDF
    BACKGROUND: A central issue in the design of microarray-based analysis of global gene expression is the choice between using cells of single type and a mixture of cells. This study quantified the proportion of lipopolysaccharide (LPS) induced differentially expressed monocyte genes that could be measured in peripheral blood mononuclear cells (PBMC), and determined the extent to which gene expression in the non-monocyte cell fraction diluted or obscured fold changes that could be detected in the cell mixture. METHODOLOGY/PRINCIPAL FINDINGS: Human PBMC were stimulated with LPS, and monocytes were then isolated by positive (Mono+) or negative (Mono-) selection. The non-monocyte cell fraction (MonoD) remaining after positive selection of monocytes was used to determine the effect of non-monocyte cells on overall expression. RNA from LPS-stimulated PBMC, Mono+, Mono- and MonoD samples was co-hybridised with unstimulated RNA for each cell type on oligonucleotide microarrays. There was a positive correlation in gene expression between PBMC and both Mono+ (0.77) and Mono- (0.61-0.67) samples. Analysis of individual genes that were differentially expressed in Mono+ and Mono- samples showed that the ability to detect expression of some genes was similar when analysing PBMC, but for others, differential expression was either not detected or changed in the opposite direction. As a result of the dilutional or obscuring effect of gene expression in non-monocyte cells, overall about half of the statistically significant LPS-induced changes in gene expression in monocytes were not detected in PBMC. However, 97% of genes with a four fold or greater change in expression in monocytes after LPS stimulation, and almost all (96-100%) of the top 100 most differentially expressed monocyte genes were detected in PBMC. CONCLUSIONS/SIGNIFICANCE: The effect of non-responding cells in a mixture dilutes or obscures the detection of subtle changes in gene expression in an individual cell type. However, for studies in which only the most highly differentially expressed genes are of interest, separating and analysing individual cell types may be unnecessary

    Adult Drosophila melanogaster evolved for antibacterial defense invest in infection-induced expression of both humoral and cellular immunity genes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>While the transcription of innate immunity genes in response to bacterial infection has been well-characterised in the Drosophila model, we recently demonstrated the capacity for such transcription to evolve in flies selected for improved antibacterial defense. Here we use this experimental system to examine how insects invest in constitutive versus infection-induced transcription of immunity genes. These two strategies carry with them different consequences with respect to energetic and pleiotropic costs and may be more or less effective in improving defense depending on whether the genes contribute to humoral or cellular aspects of immunity.</p> <p>Findings</p> <p>Contrary to expectation we show that selection preferentially increased the infection-induced expression of both cellular and humoral immunity genes. Given their functional roles, infection induced increases in expression were expected for the humoral genes, while increases in constitutive expression were expected for the cellular genes. We also report a restricted ability to improve transcription of immunity genes that is on the order of 2-3 fold regardless of total transcription level of the gene.</p> <p>Conclusions</p> <p>The evolved increases in infection-induced expression of the cellular genes may result from specific cross talk with humoral pathways or from generalised strategies for enhancing immunity gene transcription. A failure to see improvements in constitutive expression of the cellular genes suggests either that increases might come at too great a cost or that patterns of expression in adults are decoupled from the larval phase where increases would be most effective. The similarity in fold change increase across all immunity genes may suggest a shared mechanism for the evolution of increased transcription in small, discrete units such as duplication of <it>cis</it>-regulatory elements.</p
    corecore