1,471 research outputs found

    Generalized modal expansion of electromagnetic field in 2-D bounded and unbounded media

    Get PDF
    A generalized modal expansion theory is presented to investigate and illustrate the physics of wave-matter interaction within arbitrary two-dimensional (2-D) bounded and unbounded electromagnetic problems. We start with the bounded case where the field excited by any sources is expanded with a complete set of biorthogonal eigenmodes. In regard to non-Hermitian or nonreciprocal problems, an auxiliary system is constructed to seek for the modal-expansion solution. We arrive at the unbounded case when the boundary tends to infinity or is replaced by the perfectly matched layer (PML). Modes are approximately categorized into two types: trapped modes and radiation modes, which respond differently to environment variations. When coupled with the source, these modes contribute to the modal-expansion solution with different weights, which leads to a reduced modal representation of the excited field in some geometries. © 2002-2011 IEEE.published_or_final_versio

    Cloning and bioinformatics analysis of an ubiquitin gene of the rice stem borer, Chilo suppressalis Walker (Lepidoptera: Pyralidae)

    Get PDF
    Ubiquitin which has the function of selective protein degradation may play an important role in the regulation of insect growth and development. The coding sequence of an ubiquitin gene from the larvae of the rice stem borer, Chilo suppressalis Walker (Lepidoptera: Pyralidae) named CsUB (GenBank Accession No. GU238420) was cloned by RT-PCR and sequenced in this study, with primers according to the sequences of ubiquitin genes  from Homo sapiens, Drosophila melanogaster and Lepidopteran insects. Sequence analysis showed that the length of the coding sequence is 228 bp, encoding 76 amino acids with calculated molecular weight of 8.50 kDa and the theoretical isoeletric point of 5.26. Signal sequence and transmembrane domain had not been found. Multiple sequence alignment indicated that CsUB gene sequence with other known gene sequences of invertebrates and vertebrates had a high degree of homology (more than 72% similarity) and a shorter genetic distance (lower than 0.360). During the genetic diversity analysis, the total of 104 polymorphic sites was detected from 18 ubiquitin gene sequences and 18 haplotypes were sorted. Abundant genetic diversity and strong codon usage bias were found by the haplotype diversity (1.000), average number of nucleotide differences (47.475), nucleotide diversity (0.20866), effective number of codons (44.526), codon bias index (0.559) and scaled Chi-square (0.779). The predicated secondary structure composition of CsUB protein had about 32.89% extended strands, 36.84% random colis, 15.79% alpha helixes and 14.47% beta turns. Subcellular localization analysis showed that CsUB protein of cytoplasm, cell nucleus, mitochondrion, cell skeleton and plasma membrane occupied about 47.80, 26.10, 17.40, 4.30 and 4.30%, respectively. Sequence, homology and structural analysis confirmed that CsUB gene was highly conserved during evolution and belonged to ubiquitin gene family. The results might provide some fundamental data for further studies on expressed characteristics and physiological functions of CsUB gene.Key words: Chilo suppressalis Walker, ubiquitin, gene cloning, bioinformatics

    Self-rated health in middle-aged and elderly Chinese : distribution, determinants and associations with cardio-metabolic risk factors

    Get PDF
    Background: Self-rated health (SRH) has been demonstrated to be an accurate reflection of a person's health and a valid predictor of incident mortality and chronic morbidity. We aimed to evaluate the distribution and factors associated with SRH and its association with biomarkers of cardio-metabolic diseases among middle-aged and elderly Chinese. Methods: Survey of 1,458 men and 1,831 women aged 50 to 70 years, conducted in one urban and two rural areas of Beijing and Shanghai in 2005. SRH status was measured and categorized as good (very good and good) vs. not good (fair, poor and very poor). Determinants of SRH and associations with biomarkers of cardio-metabolic diseases were evaluated using logistic regression. Results: Thirty two percent of participants reported good SRH. Males and rural residents tended to report good SRH. After adjusting for potential confounders, residence, physical activity, employment status, sleep quality and presence of diabetes, cardiovascular disease, and depression were the main determinants of SRH. Those free from cardiovascular disease (OR 3.68; 95%CI 2.39; 5.66), rural residents (OR 1.89; 95% CI 1.47; 2.43), non-depressed participants (OR 2.50; 95% CI 1.67; 3.73) and those with good sleep quality (OR 2.95; 95% CI 2.22; 3.91) had almost twice or over the chance of reporting good SRH compared to their counterparts. There were significant associations -and trend- between SRH and levels of inflammatory markers, insulin levels and insulin resistance. Conclusion: Only one third of middle-aged and elderly Chinese assessed their health status as good or very good. Although further longitudinal studies are required to confirm our findings, interventions targeting social inequalities, lifestyle patterns might not only contribute to prevent chronic morbidity but as well to improve populations' perceived health

    In-Plane Orbital Texture Switch at the Dirac Point in the Topological Insulator Bi2Se3

    Full text link
    Topological insulators are novel macroscopic quantum-mechanical phase of matter, which hold promise for realizing some of the most exotic particles in physics as well as application towards spintronics and quantum computation. In all the known topological insulators, strong spin-orbit coupling is critical for the generation of the protected massless surface states. Consequently, a complete description of the Dirac state should include both the spin and orbital (spatial) parts of the wavefunction. For the family of materials with a single Dirac cone, theories and experiments agree qualitatively, showing the topological state has a chiral spin texture that changes handedness across the Dirac point (DP), but they differ quantitatively on how the spin is polarized. Limited existing theoretical ideas predict chiral local orbital angular momentum on the two sides of the DP. However, there have been neither direct measurements nor calculations identifying the global symmetry of the spatial wavefunction. Here we present the first results from angle-resolved photoemission experiment and first-principles calculation that both show, counter to current predictions, the in-plane orbital wavefunctions for the surface states of Bi2Se3 are asymmetric relative to the DP, switching from being tangential to the k-space constant energy surfaces above DP, to being radial to them below the DP. Because the orbital texture switch occurs exactly at the DP this effect should be intrinsic to the topological physics, constituting an essential yet missing aspect in the description of the topological Dirac state. Our results also indicate that the spin texture may be more complex than previously reported, helping to reconcile earlier conflicting spin resolved measurements

    Controlled release from zein matrices: Interplay of drug hydrophobicity and pH

    Get PDF
    Purpose: In earlier studies, the corn protein zein is found to be suitable as a sustained release agent, yet the range of drugs for which zein has been studied remains small. Here, zein is used as a sole excipient for drugs differing in hydrophobicity and isoelectric point: indomethacin, paracetamol and ranitidine. Methods: Caplets were prepared by hot-melt extrusion (HME) and injection moulding (IM). Each of the three model drugs were tested on two drug loadings in various dissolution media. The physical state of the drug, microstructure and hydration behaviour were investigated to build up understanding for the release behaviour from zein based matrix for drug delivery. Results: Drug crystallinity of the caplets increases with drug hydrophobicity. For ranitidine and indomethacin, swelling rates, swelling capacity and release rates were pH dependent as a consequence of the presence of charged groups on the drug molecules. Both hydration rates and release rates could be approached by existing models. Conclusion: Both the drug state as pH dependant electrostatic interactions are hypothesised to influence release kinetics. Both factors can potentially be used factors influencing release kinetics release, thereby broadening the horizon for zein as a tuneable release agent

    Simultaneous expression of Oct4 and genes of three germ layers in single cell-derived multipotent adult progenitor cells

    Get PDF
    Future application of adult stem cells in clinical therapies largely depends on the successful isolation of homogeneous stem cells with high plasticity. Multipotent adult progenitor cells (MAPCs) are thought to be a more primitive stem cell population capable of extensive in vitro proliferation with no senescence or loss of differentiation capability. The present study was aimed to find a less complicated and more economical protocol for obtaining single cell-derived MAPCs and understand the molecule mechanism of multi-lineage differentiation of MAPCs. We successfully obtained a comparatively homogeneous population of MAPCs and confirmed that single cell-derived MAPCs were able to transcribe Oct4 and genes of three germ layers simultaneously, and differentiate into multiple lineages. Our observations suggest that single cell-derived MAPCs under appropriate circumstances could maintain not only characteristics of stem cells but multi-lineage differentiation potential through quantitative modulation of corresponding regulating gene expression, rather than switching on expression of specific genes

    Serum microRNA array analysis identifies miR-140-3p, miR-33b-3p and miR-671-3p as potential osteoarthritis biomarkers involved in metabolic processes.

    Get PDF
    Background: MicroRNAs (miRNAs) in circulation have emerged as promising biomarkers. In this study, we aimed to identify a circulating miRNA signature for osteoarthritis (OA) patients and in combination with bioinformatics analysis to evaluate the utility of selected differentially expressed miRNAs in the serum as potential OA biomarkers. Methods: Serum samples were collected from 12 primary OA patients, and 12 healthy individuals were screened using the Agilent Human miRNA Microarray platform interrogating 2549 miRNAs. Receiver Operating Characteristic (ROC) curves were constructed to evaluate the diagnostic performance of the deregulated miRNAs. Expression levels of selected miRNAs were validated by quantitative real-time PCR (qRT-PCR) in all serum and in articular cartilage samples from OA patients (n = 12) and healthy individuals (n = 7). Bioinformatics analysis was used to investigate the involved pathways and target genes for the above miRNAs. Results: We identified 279 differentially expressed miRNAs in the serum of OA patients compared to controls. Two hundred and five miRNAs (73.5%) were upregulated and 74 (26.5%) downregulated. ROC analysis revealed that 77 miRNAs had area under the curve (AUC) > 0.8 and p < 0.05. Bioinformatics analysis in the 77 miRNAs revealed that their target genes were involved in multiple signaling pathways associated with OA, among which FoxO, mTOR, Wnt, pI3K/akt, TGF-β signaling pathways, ECM-receptor interaction, and fatty acid biosynthesis. qRT-PCR validation in seven selected out of the 77 miRNAs revealed 3 significantly downregulated miRNAs (hsa-miR-33b-3p, hsa-miR-671-3p, and hsa-miR-140-3p) in the serum of OA patients, which were in silico predicted to be enriched in pathways involved in metabolic processes. Target-gene analysis of hsa-miR-140-3p, hsa-miR-33b-3p, and hsa-miR-671-3p revealed that InsR and IGFR1 were common targets of all three miRNAs, highlighting their involvement in regulation of metabolic processes that contribute to OA pathology. Hsa-miR-140-3p and hsa-miR-671-3p expression levels were consistently downregulated in articular cartilage of OA patients compared to healthy individuals. Conclusions: A serum miRNA signature was established for the first time using high density resolution miR-arrays in OA patients. We identified a three-miRNA signature, hsa-miR-140-3p, hsa-miR-671-3p, and hsa-miR-33b-3p, in the serum of OA patients, predicted to regulate metabolic processes, which could serve as a potential biomarker for the evaluation of OA risk and progression.Peer reviewedFinal Published versio

    Birth Weight and the Risk of Cardiovascular Outcomes: A Report From the Large Population-Based UK Biobank Cohort Study

    Get PDF
    BackgroundBirth weight has been reported to be associated with the risk of incident cardiovascular disease (CVD); however, the relationship remains inconclusive. Here, we aimed to prospectively assess the associations between birth weight and CVD risk using the data from UK Biobank, a large-scale, prospective cohort study.MethodsWe included 270,297 participants who were free of CVD at baseline and reported their birth weight for analyses. The primary outcome was incident CVD. Hazard ratios (HRs) and 95% confidence intervals (CIs) for outcomes were calculated using Cox proportional hazards models adjusted for potential confounding variables.ResultsDuring a median follow-up of 8.07 years (IQR: 7.4-8.7 years), 10,719 incident CVD events were recorded. The HRs for low birth weight vs. normal birth weight (2.5-4.0 kg) were 1.23 (95% CI: 1.09-1.38) for risk of incident CVD, 1.52 (95% CI: 1.18-1.95) for stroke, 1.33 (95% CI: 1.07-1.64) for myocardial infarction, and 1.15 (95% CI: 1.01-1.32) for CHD. For the ones with low birth weight, the risk of CVD is reduced by 11% for every kilogram of birth weight gain. The association of low birth weight with CVD was stronger among those younger than 55 years (p = 0.001). No association between high birth weight and risk of cardiovascular outcomes was found.ConclusionLow birth weight was associated with an increased risk of cardiovascular events. These findings highlight the longstanding consequence of low birth weight on cardiovascular system

    Nonmonotone Barzilai-Borwein Gradient Algorithm for 1\ell_1-Regularized Nonsmooth Minimization in Compressive Sensing

    Full text link
    This paper is devoted to minimizing the sum of a smooth function and a nonsmooth 1\ell_1-regularized term. This problem as a special cases includes the 1\ell_1-regularized convex minimization problem in signal processing, compressive sensing, machine learning, data mining, etc. However, the non-differentiability of the 1\ell_1-norm causes more challenging especially in large problems encountered in many practical applications. This paper proposes, analyzes, and tests a Barzilai-Borwein gradient algorithm. At each iteration, the generated search direction enjoys descent property and can be easily derived by minimizing a local approximal quadratic model and simultaneously taking the favorable structure of the 1\ell_1-norm. Moreover, a nonmonotone line search technique is incorporated to find a suitable stepsize along this direction. The algorithm is easily performed, where the values of the objective function and the gradient of the smooth term are required at per-iteration. Under some conditions, the proposed algorithm is shown to be globally convergent. The limited experiments by using some nonconvex unconstrained problems from CUTEr library with additive 1\ell_1-regularization illustrate that the proposed algorithm performs quite well. Extensive experiments for 1\ell_1-regularized least squares problems in compressive sensing verify that our algorithm compares favorably with several state-of-the-art algorithms which are specifically designed in recent years.Comment: 20 page
    corecore