2,134 research outputs found

    Effect of metal ions on the growth and metabolites production of Ganoderma lucidum in submerged culture

    Get PDF
    The effects of several metal ions on the cell growth, production of polysaccharides by Ganoderma lucidum in submerged fermentation were studied. The results showed that 50 ppm Se2+ and 25 ppm Se2+ was identified to be the most favorable for biomass (11.103 ± 0.6 g/l ) and polysaccharide production (IPS and EPS was 183 ± 10.2 and 248 ± 5.5 mg/l, respectively); 100 ppm of Fe2+ and 50 ppm of Zn2+ were suitable for growth (the biomass was 8.23 ± 0.67 and 8.01 ± 0.29 g/l, respectively) and under the concentration of 50 ppm of Zn2+ and Fe2+, the production of polysaccharide was up to the most (EPS content: 263±4 and 254.3±8.0 mg/l; IPS content : 170±0.8 and 174±5 mg/l); Mg2+ had no obvious effect on biomass and polysaccharide production; Cr2+ was poisonous to the cell under the test concentration. The combination (FeSO4, 50 ppm; NaSeSO3, 25 ppm; ZnSO4, 75 ppm) by A 9 ×3 replicates (27) experiments of L9 (34) orthogonal projects was tested optimal for the cell growth and polysaccharides production. Biomass, EPS and IPS production reached their good value of 14.7 ± 0.5 g/l, 369 ± 6 mg/l and 239 ± 4 mg/g, respectively under the combination, which were higher 130.7, 50 and 50%, respectively than in the basal fermentation medium without metal ions. The validation experiment showed the experimental values agreed with the predicted values well (error <1%).Key words: Ganoderma lucidum, metal ions, biomass, polysaccharide, orthogonal projects

    Reaction pathways and mechanisms of the electrochemical degradation of phenol on different electrodes

    Get PDF
    Laboratory experiments were carried out on the kinetics and pathways of the electrochemical (EC) degradation of phenol at three different types of anodes, Ti/SnO2-Sb, Ti/RuO2, and Pt. Although phenol was oxidised by all of the anodes at a current density of 20 mA/cm2 or a cell voltage of 4.6 V, there was a considerable difference between the three anode types in the effectiveness and performance of EC organic degradation. Phenol was readily mineralized at the Ti/SnO2-Sb anode, but its degradation was much slower at the Ti/RuO2 and Pt anodes. The analytical results of high-performance liquid chromatography (HPLC) and gas chromatography coupled with mass spectrometry (GC/MS) indicated that the intermediate products of EC phenol degradation, including benzoquinone and organic acids, were subsequently oxidised rapidly by the Ti/SnO2-Sb anode, but accumulated in the cells of Ti/RuO2 and Pt. There was also a formation of dark-coloured polymeric compounds and precipitates in the solutions electrolyzed by the Ti/RuO2 and Pt anodes, which was not observed for the Ti/SnO 2-Sb cells. It is argued that anodic property not only affects the reaction kinetics of various steps of EC organic oxidation, but also alters the pathway of phenol electrolysis. Favourable surface treatment, such as the SnO2-Sb coating, provides the anode with an apparent catalytic function for rapid organic oxidation that is probably brought about by hydroxyl radicals generated from anodic water electrolysis. © 2005 Elsevier Ltd. All rights reserved.postprin

    Screening of seven microsatellite markers for litter size in Xinong Saanen dairy goat

    Get PDF
    Seven microsatellite markers OarAE101, BM1329, OarHH55, BM143, BMS2508, OarAE129 and OarFCB11 closely associated with high reproduction trait in sheep were analyzed for polymorphisms in Xinong Saanen dairy goat. The results indicated that there were high genetic polymorphisms at six microsatellite loci. The number of effective alleles (Ne), polymorphism information content (PIC) and average heterozygosity (He) were the highest at OarFCB11 and the lowest at OarAE129 in Xinong Saanen dairy goat. The analysis of the effect of the six polymorphisms microsatellite loci on the litter size of Xinong Saanen dairy goat indicated that these polymorphisms microsatellite loci had positive effect on the litter size.Key words: Microsatellite markers, Xinong Saanen dairy goat, genetic polymorphism, litter size

    A Statistical Model for Estimating Maternal-Zygotic Interactions and Parent-of-Origin Effects of QTLs for Seed Development

    Get PDF
    Proper development of a seed requires coordinated exchanges of signals among the three components that develop side by side in the seed. One of these is the maternal integument that encloses the other two zygotic components, i.e., the diploid embryo and its nurturing annex, the triploid endosperm. Although the formation of the embryo and endosperm contains the contributions of both maternal and paternal parents, maternally and paternally derived alleles may be expressed differently, leading to a so-called parent-of-origin or imprinting effect. Currently, the nature of how genes from the maternal and zygotic genomes interact to affect seed development remains largely unknown. Here, we present a novel statistical model for estimating the main and interaction effects of quantitative trait loci (QTLs) that are derived from different genomes and further testing the imprinting effects of these QTLs on seed development. The experimental design used is based on reciprocal backcrosses toward both parents, so that the inheritance of parent-specific alleles could be traced. The computing model and algorithm were implemented with the maximum likelihood approach. The new strategy presented was applied to study the mode of inheritance for QTLs that control endoreduplication traits in maize endosperm. Monte Carlo simulation studies were performed to investigate the statistical properties of the new model with the data simulated under different imprinting degrees. The false positive rate of imprinting QTL discovery by the model was examined by analyzing the simulated data that contain no imprinting QTL. The reciprocal design and a series of analytical and testing strategies proposed provide a standard procedure for genomic mapping of QTLs involved in the genetic control of complex seed development traits in flowering plants

    Byssinosis in Guangzhou, China

    Get PDF
    Objectives - To study the prevalence of byssinosis and other respiratory abnormalities in workers exposed to cotton dust in Guangzhou in two factories that processed purely cotton. Methods - All the 1320 workers exposed were included. The controls were 1306 workers with no history of occupational dust exposure. Total dust and inhalable dust were measured by Chinese total dust sampler and American vertical elutriator respectively. A World Health Organisation questionnaire was used. Forced vital capacity (FVC) and forced expiratory volume in one second (FEV 1) were measured by a Vitalograph spirometer. Results - The median inhalable dust concentrations ranged from 0.41 to 1.51 mg/m 3 and median total dust concentrations from 3.04 to 12.32 mg/m. The prevalence of respiratory abnormalities in the cotton workers were (a) typical Monday symptoms 9.0%; (b) FEV 1 fall by ≥ 5% after a shift 16.8%; (c) FEV 1 fall by ≥ 10% after a shift 4.2%; (d) FEV'q < 80% predicted 6.1%; (e) FEV 1/FVC < 75% 4.0%; (f) cough or phlegm 18.2%; (g) chronic bronchitis 10-9%; and (h) byssinosis, defined by (a) plus (b) 1.7%. With the exception of (d), most of the prevalences increased with increasing age, duration of exposure, and cumulative inhalable dust exposure. No increasing trends of respiratory abnormalities were found for current total dust, inhalable dust, and cumulative total dust concentrations. Compared with controls, after adjustment for sex and smoking, with the exception of (d), all the pooled relative risks of respiratory abnormalities were raised for cotton exposure. Conclusions - It is concluded that cumulative inhalable cotton is likely to be the cause of byssinotic symptoms, acute lung function decrements, cough, or phlegm, and chronic bronchitis.published_or_final_versio

    Formyl Peptide Receptor as a Novel Therapeutic Target for Anxiety-Related Disorders

    Get PDF
    Formyl peptide receptors (FPR) belong to a family of sensors of the immune system that detect microbe-associated molecules and inform various cellular and sensorial mechanisms to the presence of pathogens in the host. Here we demonstrate that Fpr2/3-deficient mice show a distinct profile of behaviour characterised by reduced anxiety in the marble burying and light-dark box paradigms, increased exploratory behaviour in an open-field, together with superior performance on a novel object recognition test. Pharmacological blockade with a formyl peptide receptor antagonist, Boc2, in wild type mice reproduced most of the behavioural changes observed in the Fpr2/3(-/-) mice, including a significant improvement in novel object discrimination and reduced anxiety in a light/dark shuttle test. These effects were associated with reduced FPR signalling in the gut as shown by the significant reduction in the levels of p-p38. Collectively, these findings suggest that homeostatic FPR signalling exerts a modulatory effect on anxiety-like behaviours. These findings thus suggest that therapies targeting FPRs may be a novel approach to ameliorate behavioural abnormalities present in neuropsychiatric disorders at the cognitive-emotional interface

    Silicon Mie Resonators for Highly Directional Light Emission from monolayer MoS2

    Get PDF
    Controlling light emission from quantum emitters has important applications ranging from solid-state lighting and displays to nanoscale single-photon sources. Optical antennas have emerged as promising tools to achieve such control right at the location of the emitter, without the need for bulky, external optics. Semiconductor nanoantennas are particularly practical for this purpose because simple geometries, such as wires and spheres, support multiple, degenerate optical resonances. Here, we start by modifying Mie scattering theory developed for plane wave illumination to describe scattering of dipole emission. We then use this theory and experiments to demonstrate several pathways to achieve control over the directionality, polarization state, and spectral emission that rely on a coherent coupling of an emitting dipole to optical resonances of a Si nanowire. A forward-to-backward ratio of 20 was demonstrated for the electric dipole emission at 680 nm from a monolayer MoS2 by optically coupling it to a Si nanowire

    Upper atmospheres and ionospheres of planets and satellites

    Full text link
    The upper atmospheres of the planets and their satellites are more directly exposed to sunlight and solar wind particles than the surface or the deeper atmospheric layers. At the altitudes where the associated energy is deposited, the atmospheres may become ionized and are referred to as ionospheres. The details of the photon and particle interactions with the upper atmosphere depend strongly on whether the object has anintrinsic magnetic field that may channel the precipitating particles into the atmosphere or drive the atmospheric gas out to space. Important implications of these interactions include atmospheric loss over diverse timescales, photochemistry and the formation of aerosols, which affect the evolution, composition and remote sensing of the planets (satellites). The upper atmosphere connects the planet (satellite) bulk composition to the near-planet (-satellite) environment. Understanding the relevant physics and chemistry provides insight to the past and future conditions of these objects, which is critical for understanding their evolution. This chapter introduces the basic concepts of upper atmospheres and ionospheres in our solar system, and discusses aspects of their neutral and ion composition, wind dynamics and energy budget. This knowledge is key to putting in context the observations of upper atmospheres and haze on exoplanets, and to devise a theory that explains exoplanet demographics.Comment: Invited Revie

    Genomic-Bioinformatic Analysis of Transcripts Enriched in the Third-Stage Larva of the Parasitic Nematode Ascaris suum

    Get PDF
    Differential transcription in Ascaris suum was investigated using a genomic-bioinformatic approach. A cDNA archive enriched for molecules in the infective third-stage larva (L3) of A. suum was constructed by suppressive-subtractive hybridization (SSH), and a subset of cDNAs from 3075 clones subjected to microarray analysis using cDNA probes derived from RNA from different developmental stages of A. suum. The cDNAs (n = 498) shown by microarray analysis to be enriched in the L3 were sequenced and subjected to bioinformatic analyses using a semi-automated pipeline (ESTExplorer). Using gene ontology (GO), 235 of these molecules were assigned to ‘biological process’ (n = 68), ‘cellular component’ (n = 50), or ‘molecular function’ (n = 117). Of the 91 clusters assembled, 56 molecules (61.5%) had homologues/orthologues in the free-living nematodes Caenorhabditis elegans and C. briggsae and/or other organisms, whereas 35 (38.5%) had no significant similarity to any sequences available in current gene databases. Transcripts encoding protein kinases, protein phosphatases (and their precursors), and enolases were abundantly represented in the L3 of A. suum, as were molecules involved in cellular processes, such as ubiquitination and proteasome function, gene transcription, protein–protein interactions, and function. In silico analyses inferred the C. elegans orthologues/homologues (n = 50) to be involved in apoptosis and insulin signaling (2%), ATP synthesis (2%), carbon metabolism (6%), fatty acid biosynthesis (2%), gap junction (2%), glucose metabolism (6%), or porphyrin metabolism (2%), although 34 (68%) of them could not be mapped to a specific metabolic pathway. Small numbers of these 50 molecules were predicted to be secreted (10%), anchored (2%), and/or transmembrane (12%) proteins. Functionally, 17 (34%) of them were predicted to be associated with (non-wild-type) RNAi phenotypes in C. elegans, the majority being embryonic lethality (Emb) (13 types; 58.8%), larval arrest (Lva) (23.5%) and larval lethality (Lvl) (47%). A genetic interaction network was predicted for these 17 C. elegans orthologues, revealing highly significant interactions for nine molecules associated with embryonic and larval development (66.9%), information storage and processing (5.1%), cellular processing and signaling (15.2%), metabolism (6.1%), and unknown function (6.7%). The potential roles of these molecules in development are discussed in relation to the known roles of their homologues/orthologues in C. elegans and some other nematodes. The results of the present study provide a basis for future functional genomic studies to elucidate molecular aspects governing larval developmental processes in A. suum and/or the transition to parasitism

    Enhanced cycling performance and high energy density of LiFePO4 based lithium ion batteries

    Get PDF
    LiFePO4 attracts a lot of attention as cathode materials for the next generation of lithium ion batteries. However, LiFePO4 has a poor rate capability attributed to low electronic conductivity and low density. There is seldom data reported on lithium ion batteries with LiFePO4 as cathode and graphite as anode. According to our experimental results, the capacity fading on cycling is surprisingly negligible at 1664 cycles for the cell type 042040. It delivers a capacity of 1170 mAh for 18650 cell type at 4.5C discharge rate. It is confirmed that lithium ion batteries with LiFePO4 as cathode are suitable for electric vehicle application. (c) 2007 Elsevier B.V. All rights reserved
    corecore