1,487 research outputs found

    Genes encoding Pir51, Beclin 1, RbAp48 and aldolase b are up or down-regulated in human primary hepatocellular carcinoma

    Get PDF
    Aim: To reveal new tumor markers and target genes from differentially expressed genes of primary tumor samples using cDNA microarray. Methods: The 33P labeled cDNAs were synthesized by reverse transcription of message RNA from the liver cancerous tissue and adjacent non-cancerous liver tissue from the same patient and used to hybridize to LifeGrid 1.0 cDNA microarray blot containing 8400 known and unique human cDNA gene targets, and an expression profile of genes was produced in one paired human liver tumor tissue. After a global analysis of gene expression of 8400 genes, we selected some genes to confirm the differential expression using Northern blot and RT-PCR. Results: Parallel analysis of the hybridized signals enabled us to get an expression profile of genes in which about 500 genes were differentially expressed in the paired liver tumor tissues. We identified 4 genes, the expression of three (Beclin 1, RbAp48 and Pir51) were increased and one (aldolase b) was decreased in liver tumor tissues. In addition, the expression of these genes in 6 hepatoma cell lines was also showed by RT-PCR analysis. Conclusion: cDNA microarray permits a high throughput identification of changes in gene expression. The genes encoding Beclin 1, RbAp48, Pir51 and aldolase b are first reported that may be related with hepatocarcinoma. Copyright © 2004 by The WJG Press ISSN 1007-9327.published_or_final_versio

    A facile chemical conversion synthesis of Sb2S3 nanotubes and the visible light-driven photocatalytic activities

    Get PDF
    We report a simple chemical conversion and cation exchange technique to realize the synthesis of Sb2S3 nanotubes at a low temperature of 90°C. The successful chemical conversion from ZnS nanotubes to Sb2S3 ones benefits from the large difference in solubility between ZnS and Sb2S3. The as-grown Sb2S3 nanotubes have been transformed from a weak crystallization to a polycrystalline structure via successive annealing. In addition to the detailed structural, morphological, and optical investigation of the yielded Sb2S3 nanotubes before and after annealing, we have shown high photocatalytic activities of Sb2S3 nanotubes for methyl orange degradation under visible light irradiation. This approach offers an effective control of the composition and structure of Sb2S3 nanomaterials, facilitates the production at a relatively low reaction temperature without the need of organics, templates, or crystal seeds, and can be extended to the synthesis of hollow structures with various compositions and shapes for unique properties

    Impact of the Herbal Medicine Sophora flavescens on the Oral Pharmacokinetics of Indinavir in Rats: The Involvement of CYP3A and P-Glycoprotein

    Get PDF
    Sophora flavescens is a Chinese medicinal herb used for the treatment of gastrointestinal hemorrhage, skin diseases, pyretic stranguria and viral hepatitis. In this study the herb-drug interactions between S. flavescens and indinavir, a protease inhibitor for HIV treatment, were evaluated in rats. Concomitant oral administration of Sophora extract (0.158 g/kg or 0.63 g/kg, p.o.) and indinavir (40 mg/kg, p.o.) in rats twice a day for 7 days resulted in a dose-dependent decrease of plasma indinavir concentrations, with 55%–83% decrease in AUC0-∞ and 38%–78% reduction in Cmax. The CL (Clearance)/F (fraction of dose available in the systemic circulation) increased up to 7.4-fold in Sophora-treated rats. Oxymatrine treatment (45 mg/kg, p.o.) also decreased indinavir concentrations, while the ethyl acetate fraction of Sophora extract had no effect. Urinary indinavir (24-h) was reduced, while the fraction of indinavir in faeces was increased after Sophora treatment. Compared to the controls, multiple dosing of Sophora extract elevated both mRNA and protein levels of P-gp in the small intestine and liver. In addition, Sophora treatment increased intestinal and hepatic mRNA expression of CYP3A1, but had less effect on CYP3A2 expression. Although protein levels of CYP3A1 and CYP3A2 were not altered by Sophora treatment, hepatic CYP3A activity increased in the Sophora-treated rats. All available data demonstrated that Sophora flavescens reduced plasma indinavir concentration after multiple concomitant doses, possibly through hepatic CYP3A activity and induction of intestinal and hepatic P-gp. The animal study would be useful for predicting potential interactions between natural products and oral pharmaceutics and understanding the mechanisms prior to human studies. Results in the current study suggest that patients using indinavir might be cautioned in the use of S. flavescens extract or Sophora-derived products

    Vascular Endothelial Dysfunction in β-Thalassemia Occurs Despite Increased eNOS Expression and Preserved Vascular Smooth Muscle Cell Reactivity to NO

    Get PDF
    The hereditary β-thalassemia major condition requires regular lifelong blood transfusions. Transfusion-related iron overloading has been associated with the onset of cardiovascular complications, including cardiac dysfunction and vascular anomalies. By using an untransfused murine model of β-thalassemia major, we tested the hypothesis that vascular endothelial dysfunction, alterations of arterial structure and of its mechanical properties would occur despite the absence of treatments.Vascular function and structure were evaluated ex vivo. Compared to the controls, endothelium-dependent vasodilation with acetylcholine was blunted in mesenteric resistance arteries of β-thalassemic mice while the endothelium-independent vasodilator (sodium nitroprusside) produced comparable vessel dilation, indicating endothelial cell impairment with preserved smooth muscle cell reactivity to nitric oxide (NO). While these findings suggest a decrease in NO bioavailability, Western blotting showed heightened expression of aortic endothelial NO synthase (eNOS) in β-thalassemia. Vascular remodeling of the common carotid arteries revealed increased medial elastin content. Under isobaric conditions, the carotid arteries of β-thalassemic mice exhibited decreased wall stress and softening due to structural changes of the vessel wall.A complex vasculopathy was identified in untransfused β-thalassemic mice characterized by altered carotid artery structure and endothelial dysfunction of resistance arterioles, likely attributable to reduced NO bioavailability despite enhanced vascular eNOS expression

    Phylogeography of the South China Field Mouse (Apodemus draco) on the Southeastern Tibetan Plateau Reveals High Genetic Diversity and Glacial Refugia

    Get PDF
    The southeastern margin of the Tibetan Plateau (SEMTP) is a particularly interesting region due to its topographic complexity and unique geologic history, but phylogeographic studies that focus on this region are rare. In this study, we investigated the phylogeography of the South China field mouse, Apodemus draco, in order to assess the role of geologic and climatic events on the Tibetan Plateau in shaping its genetic structure. We sequenced mitochondrial cytochrome b (cyt b) sequences in 103 individuals from 47 sampling sites. In addition, 23 cyt b sequences were collected from GenBank for analyses. Phylogenetic, demographic and landscape genetic methods were conducted. Seventy-six cyt b haplotypes were found and the genetic diversity was extremely high (π = 0.0368; h = 0.989). Five major evolutionary clades, based on geographic locations, were identified. Demographic analyses implied subclade 1A and subclade 1B experienced population expansions at about 0.052-0.013 Mya and 0.014-0.004 Mya, respectively. The divergence time analysis showed that the split between clade 1 and clade 2 occurred 0.26 Mya, which fell into the extensive glacial period (EGP, 0.5-0.17 Mya). The divergence times of other main clades (2.20-0.55 Mya) were congruent with the periods of the Qingzang Movement (3.6-1.7 Mya) and the Kun-Huang Movement (1.2-0.6 Mya), which were known as the most intense uplift events in the Tibetan Plateau. Our study supported the hypothesis that the SEMTP was a large late Pleistocene refugium, and further inferred that the Gongga Mountain Region and Hongya County were glacial refugia for A. draco in clade 1. We hypothesize that the evolutionary history of A. draco in the SEMTP primarily occurred in two stages. First, an initial divergence would have been shaped by uplift events of the Tibetan Plateau. Then, major glaciations in the Pleistocene added complexity to its demographic history and genetic structure

    Microarray analysis of DNA damage repair gene expression profiles in cervical cancer cells radioresistant to 252Cf neutron and X-rays

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The aim of the study was to obtain stable radioresistant sub-lines from the human cervical cancer cell line HeLa by prolonged exposure to <sup>252</sup>Cf neutron and X-rays. Radioresistance mechanisms were investigated in the resulting cells using microarray analysis of DNA damage repair genes.</p> <p>Methods</p> <p>HeLa cells were treated with fractionated <sup>252</sup>Cf neutron and X-rays, with a cumulative dose of 75 Gy each, over 8 months, yielding the sub-lines HeLaNR and HeLaXR. Radioresistant characteristics were detected by clone formation assay, ultrastructural observations, cell doubling time, cell cycle distribution, and apoptosis assay. Gene expression patterns of the radioresistant sub-lines were studied through microarray analysis and verified by Western blotting and real-time PCR.</p> <p>Results</p> <p>The radioresistant sub-lines HeLaNR and HeLaXR were more radioresisitant to <sup>252</sup>Cf neutron and X-rays than parental HeLa cells by detecting their radioresistant characteristics, respectively. Compared to HeLa cells, the expression of 24 genes was significantly altered by at least 2-fold in HeLaNR cells. Of these, 19 genes were up-regulated and 5 down-regulated. In HeLaXR cells, 41 genes were significantly altered by at least 2-fold; 38 genes were up-regulated and 3 down-regulated.</p> <p>Conclusions</p> <p>Chronic exposure of cells to ionizing radiation induces adaptive responses that enhance tolerance of ionizing radiation and allow investigations of cellular radioresistance mechanisms. The insights gained into the molecular mechanisms activated by these "radioresistance" genes will lead to new therapeutic targets for cervical cancer.</p

    Macro deformation and micro structure of 3D granular assemblies subjected to rotation of principal stress axes

    Get PDF
    This paper presents a numerical investigation on the behavior of three dimensional granular materials during continuous rotation of principal stress axes using the discrete element method. A dense specimen has been prepared as a representative element using the deposition method and subjected to stress rotation at different deviatoric stress levels. Significant plastic deformation has been observed despite that the principal stresses are kept constant. This contradicts the classical plasticity theory, but is in agreement with previous laboratory observations on sand and glass beads. Typical deformation characteristics, including volume contraction, deformation non-coaxiality, have been successfully reproduced. After a larger number of rotational cycles, the sample approaches the ultimate state with constant void ratio and follows a periodic strain path. The internal structure anisotropy has been quantified in terms of the contact-based fabric tensor. Rotation of principal stress axes densifies the packing, and leads to the increase in coordination numbers. A cyclic rotation in material anisotropy has been observed. The larger the stress ratio, the structure becomes more anisotropic. A larger fabric trajectory suggests more significant structure re-organization when rotating and explains the occurrence of more significant strain rate. The trajectory of the contact-normal based fabric is not centered in the origin, due to the anisotropy in particle orientation generated during sample generation which is persistent throughout the shearing process. The sample sheared at a lower intermediate principal stress ratio (b=0.0) (b=0.0) has been observed to approach a smaller strain trajectory as compared to the case b=0.5 b=0.5 , consistent with a smaller fabric trajectory and less significant structural re-organisation. It also experiences less volume contraction with the out-of plane strain component being dilative

    Electrical Conductivity Studies on Individual Conjugated Polymer Nanowires: Two-Probe and Four-Probe Results

    Get PDF
    <p>Abstract</p> <p>Two- and four-probe electrical measurements on individual conjugated polymer nanowires with different diameters ranging from 20 to 190 nm have been performed to study their conductivity and nanocontact resistance. The two-probe results reveal that all the measured polymer nanowires with different diameters are semiconducting. However, the four-probe results show that the measured polymer nanowires with diameters of 190, 95&#8211;100, 35&#8211;40 and 20&#8211;25 nm are lying in the insulating, critical, metallic and insulting regimes of metal&#8211;insulator transition, respectively. The 35&#8211;40 nm nanowire displays a metal&#8211;insulator transition at around 35 K. In addition, it was found that the nanocontact resistance is in the magnitude of 10<sup>4</sup>&#937; at room temperature, which is comparable to the intrinsic resistance of the nanowires. These results demonstrate that four-probe electrical measurement is necessary to explore the intrinsic electronic transport properties of isolated nanowires, especially in the case of metallic nanowires, because the metallic nature of the measured nanowires may be coved by the nanocontact resistance that cannot be excluded by a two-probe technique.</p
    corecore