13,290 research outputs found

    Multiple-Access Bosonic Communications

    Full text link
    The maximum rates for reliably transmitting classical information over Bosonic multiple-access channels (MACs) are derived when the transmitters are restricted to coherent-state encodings. Inner and outer bounds for the ultimate capacity region of the Bosonic MAC are also presented. It is shown that the sum-rate upper bound is achievable with a coherent-state encoding and that the entire region is asymptotically achievable in the limit of large mean input photon numbers.Comment: 11 pages, 5 figures, corrected two figures, accepted for publication in Phys. Rev.

    Definition, analysis and development of an optical data distribution network for integrated avionics and control systems. Part 2: Component development and system integration

    Get PDF
    Fiber optic transmission is emerging as an attractive concept in data distribution onboard civil aircraft. Development of an Optical Data Distribution Network for Integrated Avionics and Control Systems for commercial aircraft will provide a data distribution network that gives freedom from EMI-RFI and ground loop problems, eliminates crosstalk and short circuits, provides protection and immunity from lightning induced transients and give a large bandwidth data transmission capability. In addition there is a potential for significantly reducing the weight and increasing the reliability over conventional data distribution networks. Wavelength Division Multiplexing (WDM) is a candidate method for data communication between the various avionic subsystems. With WDM all systems could conceptually communicate with each other without time sharing and requiring complicated coding schemes for each computer and subsystem to recognize a message. However, the state of the art of optical technology limits the application of fiber optics in advanced integrated avionics and control systems. Therefore, it is necessary to address the architecture for a fiber optics data distribution system for integrated avionics and control systems as well as develop prototype components and systems

    Classical Extended Conformal Algebras Associated with Constrained KP Hierarchy

    Full text link
    We examine the conformal property of the second Hamiltonian structure of constrained KP hierarchy derived by Oevel and Strampp. We find that it naturallygives a family of nonlocal extended conformal algebras. We give two examples of such algebras and find that they are similar to Bilal's V algebra. By taking a gauge transformation one can map the constrained KP hierarchy to Kuperschmidt's nonstandard Lax hierarchy. We consider the second Hamiltonian structure in this representation. We show that after mapping the Lax operator to a pure differential operator the second structure becomes the sum of the second and the third Gelfand-Dickey brackets defined by this differential operator. We show that this Hamiltonian structure defines the W-U(1)-Kac-Moody algebra by working out its conformally covariant form.Comment: NHCU-HEP-94-28, 19 pages (Plain TeX

    GaAs-GaAlAs distributed-feedback diode lasers with separate optical and carrier confinement

    Get PDF
    Remarkable reduction of the threshold current density is achieved in GaAs-GaAlAs distributed-feedback diode lasers by adopting a separate-confinement heterostructure. The diodes are lased successfully at temperatures up to 340 °K under pulsed operation. The lowest threshold current density is 3 kA/cm^2 at 300 °K

    Liquid phase epitaxy of GaAlAs on GaAs substrates with fine surface corrugations

    Get PDF
    Liquid phase epitaxy of GaAlAs was performed on GaAs fine surface corrugations. By optimizing the growth conditions, GaAlAs layers were grown successfully with only minimal meltback

    Plans for phase coherent long baseline interferometry for geophysical applications using the Anik-B communications satellite

    Get PDF
    A pilot project to establish an operational phase stable very long baseline interferometer (VLBI) for geophysical studies is described. Methods for implementation as well as practical applications are presented

    Large strain actuation in barium titanate single crystals under stress and electric field

    Get PDF
    Large strain actuation in barium titanate (BaTiO3) single crystals subjected to combined uniaxial stress and electric field is examined. A maximum strain of about 0.45% is measured under a combined loading of 2.7 MPa compressive stress and ±1.25 MVm-1 cyclic electric field. Above 2.7 MPa, the crystal does not cycle fully between the in-plane and out-of-plane polarized states due to large compressive stress, and consequently, a considerable reduction in actuation strain is apparent. The hysteresis evolution of the crystal under combined electromechanical loading reveals incomplete switching characteristics and a considerable disproportion of slope gradients at zero electric field for the measured polarization and strain hysteresis curves. A likely cause for the disproportion of slope gradients is the cooperative operation of multiple 90° switching systems by which “polarization-free” strain changes are induced
    corecore