16 research outputs found

    Improved N- and C-terminal sequencing of proteins by combining positive and negative ion MALDI in-source decay mass spectrometry

    Get PDF
    The development of various ionization and fragmentation techniques has been of key importance for establishing mass spectrometry (MS) as a powerful tool for protein characterization. One example of this is matrix-assisted laser desorption/ionization (MALDI) combined with in-source decay (ISD) fragmentation that allows mapping of N- and C-terminal regions of large proteins without the need for proteolysis. Positive ion mode ISD fragments are commonly assigned in the mass region above m/z 1000, while MALDI matrix ions generally hamper the detection of smaller singly-charged fragments. The ultrahigh resolving power provided by Fourier transform ion cyclotron resonance (FT-ICR) MS partially overcomes this limitation, but to further increase detection of smaller fragments we have revisited the application of negative ion mode MALDI-ISD and found a good coverage of the peptide chain termini starting from c’2 and z’2 fragment ions. For the first time, we demonstrate that the combination of negative and positive ion MALDI FT-ICR MS is a useful tool to improve the characterization of mAbs. The different specificities of the two ion modes allowed us to selectively cover the sequence of the light and heavy chains of mAbs at increased sensitivity. A comprehensive evaluation of positive and negative ion mode MALDI-ISD FT-ICR MS in the m/z-range 46-13,500 showed an increased sequence coverage for three standard proteins, namely myoglobin, SiLuLite mAb, and NIST mAb. The data obtained in the two ion modes were, in part, complementary

    Evaluation of sibling and twin fragment ions improves the structural characterization of proteins by top-down MALDI in-source decay mass spectrometry

    Get PDF
    Comprehensive determination of primary sequence and identification of post-translational modifications (PTMs) are key elements in protein structural analysis. Various mass spectrometry (MS)-based fragmentation techniques are powerful approaches for mapping both the amino acid sequence and PTMs; one of these techniques is matrix-assisted laser desorption/ionization (MALDI), combined with in-source decay (ISD) fragmentation and Fourier-transform ion cyclotron resonance (FT-ICR) MS. MALDI-ISD MS protein analysis involves only minimal sample preparation and does not require spectral deconvolution. The resulting MALDI-ISD MS data is complementary to electrospray ionization-based MS/MS sequencing readouts, providing knowledge on the types of fragment ions is available. In this study, we evaluate the isotopic distributions of z’ ions in protein top-down MALDI-ISD FT-ICR mass spectra and show why these distributions can deviate from theoretical profiles as a result of co-occurring and isomeric z and y-NH3 ions. Two synthetic peptides, containing either normal or deuterated alanine residues, were used to confirm the presence and unravel the identity of isomeric z and y-NH3 fragment ions (“twins”). Furthermore, two reducing MALDI matrices, namely 1,5-diaminonaphthalene and N-phenyl-p-phenylenediamine were applied that yield ISD mass spectra with different fragment ion distributions. This study demonstrates that the relative abundance of isomeric z and y-NH3 ions requires consideration for accurate and confident assignments of z’ ions in MALDI-ISD FT-ICR mass spectra
    corecore