210 research outputs found

    Spin pump in the presence of a superconducting lead

    Get PDF
    We present a theoretical analysis of a spin pump in the presence of a superconducting lead. The spin pump is facilitated by a rotating magnetic field which provides a spin flip mechanism and hence can generate a spin current without an accompanying charge current. Using a nonequilibrium Green's function method, we obtain a general solution of the pumped charge current and spin current in both the adiabatic and non-adiabatic regimes. The numerical results for the charge current and spin current are presented as we vary different system parameters such as the gate voltage, the external magnetic field, and the pumping frequency. We find that for a quantum dot with a single resonant level in line with the Fermi energy of the left normal lead, a pure spin current is generated by a rotating magnetic field at any frequency. We have identified two kinds of photon-assisted processes which dominate at low pumping frequencies and high pumping frequencies, respectively.published_or_final_versio

    Oscillatory thermopower of carbon chains: First-principles calculations

    Get PDF
    We investigate the thermoelectric transport through carbon chains connected by two Al leads. Using a Landauer-Buttiker-like formula, we calculate the thermopower and thermoconductance of Al-Cn-Al from first principles. We find that the charge transfer plays an important role in the thermoelectric transport. Because of the charge transfer, the thermopower changes sign for even-odd number of carbon atoms. The thermopower and electric conductance as a function of the gate voltage also exhibit oscillatory behaviors with a phase difference of pi/2.published_or_final_versio

    Effects of iron on growth, pigment content, photosystem II efficiency, and siderophores production of Microcystis aeruginosa and Microcystis wesenbergii

    Get PDF
    Changes in growth, photosynthetic pigments, and photosystem II (PS II) photochemical efficiency as well as production of siderophores of Microcystis aeruginosa and Microcystis wesenbergii were determined in this experiment. Results showed growths of M. aeruginosa and M. wesenbergii, measured by means of optical density at 665 nm, were severely inhibited under an iron-limited condition, whereas they thrived under an iron-replete condition. The contents of chlorophyll-a, carotenoid, phycocyanin, and allophycocyanin under an iron-limited condition were lower than those under an iron-replete condition, and they all reached maximal contents on day 4 under the iron-limited condition. PS II photochemical efficiencies (maximal PS II quantum yield), saturating light levels (I-k ) and maximal electron transport rates (ETRmax) of M. aeruginosa and M. wesenbergii declined sharply under the iron-limited condition. The PS II photochemical efficiency and ETRmax of M. aeruginosa rose , whereas in the strain of M. wesenbergii, they declined gradually under the iron-replete condition. In addition, I-k of M. aeruginosa and M. wesenbergii under the iron-replete condition did not change obviously. Siderophore production of M. aeruginosa was higher than that of M. wesenbergii under the iron-limited condition. It was concluded that M. aeruginosa requires higher iron concentration for physiological and biochemical processes compared with M. wesenbergii, but its tolerance against too high a concentration of iron is weaker than M. wesenbergii.Changes in growth, photosynthetic pigments, and photosystem II (PS II) photochemical efficiency as well as production of siderophores of Microcystis aeruginosa and Microcystis wesenbergii were determined in this experiment. Results showed growths of M. aeruginosa and M. wesenbergii, measured by means of optical density at 665 nm, were severely inhibited under an iron-limited condition, whereas they thrived under an iron-replete condition. The contents of chlorophyll-a, carotenoid, phycocyanin, and allophycocyanin under an iron-limited condition were lower than those under an iron-replete condition, and they all reached maximal contents on day 4 under the iron-limited condition. PS II photochemical efficiencies (maximal PS II quantum yield), saturating light levels (I-k ) and maximal electron transport rates (ETRmax) of M. aeruginosa and M. wesenbergii declined sharply under the iron-limited condition. The PS II photochemical efficiency and ETRmax of M. aeruginosa rose , whereas in the strain of M. wesenbergii, they declined gradually under the iron-replete condition. In addition, I-k of M. aeruginosa and M. wesenbergii under the iron-replete condition did not change obviously. Siderophore production of M. aeruginosa was higher than that of M. wesenbergii under the iron-limited condition. It was concluded that M. aeruginosa requires higher iron concentration for physiological and biochemical processes compared with M. wesenbergii, but its tolerance against too high a concentration of iron is weaker than M. wesenbergii

    Antimony-doped graphene nanoplatelets

    Get PDF
    Heteroatom doping into the graphitic frameworks have been intensively studied for the development of metal-free electrocatalysts. However, the choice of heteroatoms is limited to non-metallic elements and heteroatom-doped graphitic materials do not satisfy commercial demands in terms of cost and stability. Here we realize doping semimetal antimony (Sb) at the edges of graphene nanoplatelets (GnPs) via a simple mechanochemical reaction between pristine graphite and solid Sb. The covalent bonding of the metalloid Sb with the graphitic carbon is visualized using atomic-resolution transmission electron microscopy. The Sb-doped GnPs display zero loss of electrocatalytic activity for oxygen reduction reaction even after 100,000 cycles. Density functional theory calculations indicate that the multiple oxidation states (Sb3+ and Sb5+) of Sb are responsible for the unusual electrochemical stability. Sb-doped GnPs may provide new insights and practical methods for designing stable carbon-based electrocatalystsclose0

    Morphological and ecological divergence of Lilium and Nomocharis within the Hengduan Mountains and Qinghai-Tibetan Plateau may result from habitat specialization and hybridization

    Get PDF
    Background: Several previous studies have shown that some morphologically distinctive, small genera of vascular plants that are endemic to the Qinghai-Tibetan Plateau and adjacent Hengduan Mountains appear to have unexpected and complex phylogenetic relationships with their putative sisters, which are typically more widespread and more species rich. In particular, the endemic genera may form one or more poorly resolved paraphyletic clades within the sister group despite distinctive morphology. Plausible explanations for this evolutionary and biogeographic pattern include extreme habitat specialization and hybridization. One genus consistent with this pattern is Nomocharis Franchet. Nomocharis comprises 7 - 15 species bearing showy-flowers that are endemic to the H-D Mountains. Nomocharis has long been treated as sister to Lilium L., which is comprised of more than 120 species distributed throughout the temperate Northern Hemisphere. Although Nomocharis appears morphologically distinctive, recent molecular studies have shown that it is nested within Lilium, from which is exhibits very little sequence divergence. In this study, we have used a dated molecular phylogenetic framework to gain insight into the timing of morphological and ecological divergence in Lilium-Nomocharis and to preliminarily explore possible hybridization events. We accomplished our objectives using dated phylogenies reconstructed from nuclear internal transcribed spacers (ITS) and six chloroplast markers.Results: Our phylogenetic reconstruction revealed several Lilium species nested within a clade of Nomocharis, which evolved ca. 12 million years ago and is itself nested within the rest of Lilium. Flat/open and horizon oriented flowers are ancestral in Nomocharis. Species of Lilium nested within Nomocharis diverged from Nomocharis ca. 6.5 million years ago. These Lilium evolved recurved and campanifolium flowers as well as the nodding habit by at least 3.5 million years ago. Nomocharis and the nested Lilium species had relatively low elevation ancestors (<1000 m) and underwent diversification into new, higher elevational habitats 3.5 and 5.5 million years ago, respectively. Our phylogeny reveals signatures of hybridization including incongruence between the plastid and nuclear gene trees, geographic clustering of the maternal (i.e., plastid) lineages, and divergence ages of the nuclear gene trees consistent with speciation and secondary contact, respectively.Conclusions: The timing of speciation and ecological and morphological evolutionary events in Nomocharis are temporally consistent with uplift in the Qinghai-Tibetan Plateau and of the Hengduan Mountains 7 and 3 - 4 million years ago, respectively. Thus, we speculate that the mountain building may have provided new habitats that led to specialization of morphological and ecological features in Nomocharis and the nested Lilium along ecological gradients. Additionally, we suspect that the mountain building may have led to secondary contact events that enabled hybridization in Lilium-Nomocharis. Both the habitat specialization and hybridization have probably played a role in generating the striking morphological differences between Lilium and Nomocharis.Peer reviewedBotan

    FLAME, a novel fuzzy clustering method for the analysis of DNA microarray data

    Get PDF
    BACKGROUND: Data clustering analysis has been extensively applied to extract information from gene expression profiles obtained with DNA microarrays. To this aim, existing clustering approaches, mainly developed in computer science, have been adapted to microarray data analysis. However, previous studies revealed that microarray datasets have very diverse structures, some of which may not be correctly captured by current clustering methods. We therefore approached the problem from a new starting point, and developed a clustering algorithm designed to capture dataset-specific structures at the beginning of the process. RESULTS: The clustering algorithm is named Fuzzy clustering by Local Approximation of MEmbership (FLAME). Distinctive elements of FLAME are: (i) definition of the neighborhood of each object (gene or sample) and identification of objects with "archetypal" features named Cluster Supporting Objects, around which to construct the clusters; (ii) assignment to each object of a fuzzy membership vector approximated from the memberships of its neighboring objects, by an iterative converging process in which membership spreads from the Cluster Supporting Objects through their neighbors. Comparative analysis with K-means, hierarchical, fuzzy C-means and fuzzy self-organizing maps (SOM) showed that data partitions generated by FLAME are not superimposable to those of other methods and, although different types of datasets are better partitioned by different algorithms, FLAME displays the best overall performance. FLAME is implemented, together with all the above-mentioned algorithms, in a C++ software with graphical interface for Linux and Windows, capable of handling very large datasets, named Gene Expression Data Analysis Studio (GEDAS), freely available under GNU General Public License. CONCLUSION: The FLAME algorithm has intrinsic advantages, such as the ability to capture non-linear relationships and non-globular clusters, the automated definition of the number of clusters, and the identification of cluster outliers, i.e. genes that are not assigned to any cluster. As a result, clusters are more internally homogeneous and more diverse from each other, and provide better partitioning of biological functions. The clustering algorithm can be easily extended to applications different from gene expression analysis

    Classifying RNA-Binding Proteins Based on Electrostatic Properties

    Get PDF
    Protein structure can provide new insight into the biological function of a protein and can enable the design of better experiments to learn its biological roles. Moreover, deciphering the interactions of a protein with other molecules can contribute to the understanding of the protein's function within cellular processes. In this study, we apply a machine learning approach for classifying RNA-binding proteins based on their three-dimensional structures. The method is based on characterizing unique properties of electrostatic patches on the protein surface. Using an ensemble of general protein features and specific properties extracted from the electrostatic patches, we have trained a support vector machine (SVM) to distinguish RNA-binding proteins from other positively charged proteins that do not bind nucleic acids. Specifically, the method was applied on proteins possessing the RNA recognition motif (RRM) and successfully classified RNA-binding proteins from RRM domains involved in protein–protein interactions. Overall the method achieves 88% accuracy in classifying RNA-binding proteins, yet it cannot distinguish RNA from DNA binding proteins. Nevertheless, by applying a multiclass SVM approach we were able to classify the RNA-binding proteins based on their RNA targets, specifically, whether they bind a ribosomal RNA (rRNA), a transfer RNA (tRNA), or messenger RNA (mRNA). Finally, we present here an innovative approach that does not rely on sequence or structural homology and could be applied to identify novel RNA-binding proteins with unique folds and/or binding motifs

    Genetic Polymorphisms in CYP2E1: Association with Schizophrenia Susceptibility and Risperidone Response in the Chinese Han Population

    Get PDF
    CYP2E1 is a member of the cytochrome P450 superfamily, which is involved in the metabolism and activation of both endobiotics and xenobiotics. The genetic polymorphisms of CYP2E1 gene (Chromosome 10q26.3, Accession Number NC_000010.10) are reported to be related to the development of several mental diseases and to be involved in the clinical efficacy of some psychiatric medications. We investigated the possible association of CYP2E1 polymorphisms with susceptibility to schizophrenia in the Chinese Han Population as well as the relationship with response to risperidone in schizophrenia patients.In a case-control study, we identified 11 polymorphisms in the 5' flanking region of CYP2E1 in 228 schizophrenia patients and 384 healthy controls of Chinese Han origin. From among the cases, we chose 130 patients who had undergone 8 weeks of risperidone monotherapy to examine the relationship between their response to risperidone and CYP2E1 polymorphisms. Clinical efficacy was assessed using the Brief Psychiatric Rating Scale (BPRS).Statistically significant differences in allele or genotype frequencies were found between cases and controls at rs8192766 (genotype p = 0.0048, permutation p = 0.0483) and rs2070673 (allele: p = 0.0018, permutation p = 0.0199, OR = 1.4528 95%CI = 1.1487-1.8374; genotype: p = 0.0020, permutation p = 0.0225). In addition, a GTCAC haplotype containing 5 SNPs (rs3813867, rs2031920, rs2031921, rs3813870 and rs2031922) was observed to be significantly associated with schizophrenia (p = 7.47E-12, permutation p<0.0001). However, no association was found between CYP2E1 polymorphisms/haplotypes and risperidone response.Our results suggest that CYP2E1 may be a potential risk gene for schizophrenia in the Chinese Han population. However, polymorphisms of the CYP2E1 gene may not contribute significantly to individual differences in the therapeutic efficacy of risperidone. Further studies in larger groups are warranted to confirm our results

    Effect of Sex and Prior Exposure to a Cafeteria Diet on the Distribution of Sex Hormones between Plasma and Blood Cells

    Get PDF
    It is generally assumed that steroid hormones are carried in the blood free and/or bound to plasma proteins. We investigated whether blood cells were also able to bind/carry sex-related hormones: estrone, estradiol, DHEA and testosterone. Wistar male and female rats were fed a cafeteria diet for 30 days, which induced overweight. The rats were fed the standard rat diet for 15 additional days to minimize the immediate effects of excess ingested energy. Controls were always kept on standard diet. After the rats were killed, their blood was used for 1) measuring plasma hormone levels, 2) determining the binding of labeled hormones to washed red blood cells (RBC), 3) incubating whole blood with labeled hormones and determining the distribution of label between plasma and packed cells, discounting the trapped plasma volume, 4) determining free plasma hormone using labeled hormones, both through membrane ultrafiltration and dextran-charcoal removal. The results were computed individually for each rat. Cells retained up to 32% estrone, and down to 10% of testosterone, with marked differences due to sex and diet (the latter only for estrogens, not for DHEA and testosterone). Sex and diet also affected the concentrations of all hormones, with no significant diet effects for estradiol and DHEA, but with considerable interaction between both factors. Binding to RBC was non-specific for all hormones. Estrogen distribution in plasma compartments was affected by sex and diet. In conclusion: a) there is a large non-specific RBC-carried compartment for estrone, estradiol, DHEA and testosterone deeply affected by sex; b) Prior exposure to a cafeteria (hyperlipidic) diet induced hormone distribution changes, affected by sex, which hint at sex-related structural differences in RBC membranes; c) We postulate that the RBC compartment may contribute to maintain free (i.e., fully active) sex hormone levels in a way similar to plasma proteins non-specific binding

    Effect of Sex and Prior Exposure to a Cafeteria Diet on the Distribution of Sex Hormones between Plasma and Blood Cells

    Get PDF
    It is generally assumed that steroid hormones are carried in the blood free and/or bound to plasma proteins. We investigated whether blood cells were also able to bind/carry sex-related hormones: estrone, estradiol, DHEA and testosterone. Wistar male and female rats were fed a cafeteria diet for 30 days, which induced overweight. The rats were fed the standard rat diet for 15 additional days to minimize the immediate effects of excess ingested energy. Controls were always kept on standard diet. After the rats were killed, their blood was used for 1) measuring plasma hormone levels, 2) determining the binding of labeled hormones to washed red blood cells (RBC), 3) incubating whole blood with labeled hormones and determining the distribution of label between plasma and packed cells, discounting the trapped plasma volume, 4) determining free plasma hormone using labeled hormones, both through membrane ultrafiltration and dextran-charcoal removal. The results were computed individually for each rat. Cells retained up to 32% estrone, and down to 10% of testosterone, with marked differences due to sex and diet (the latter only for estrogens, not for DHEA and testosterone). Sex and diet also affected the concentrations of all hormones, with no significant diet effects for estradiol and DHEA, but with considerable interaction between both factors. Binding to RBC was non-specific for all hormones. Estrogen distribution in plasma compartments was affected by sex and diet. In conclusion: a) there is a large non-specific RBC-carried compartment for estrone, estradiol, DHEA and testosterone deeply affected by sex; b) Prior exposure to a cafeteria (hyperlipidic) diet induced hormone distribution changes, affected by sex, which hint at sex-related structural differences in RBC membranes; c) We postulate that the RBC compartment may contribute to maintain free (i.e., fully active) sex hormone levels in a way similar to plasma proteins non-specific binding
    corecore