316 research outputs found

    Consumption patterns of sweet drinks in a population of Australian children and adolescents (2003–2008)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Intake of sweet drinks has previously been associated with the development of overweight and obesity among children and adolescents. The present study aimed to assess the consumption pattern of sweet drinks in a population of children and adolescents in Victoria, Australia.</p> <p>Methods</p> <p>Data on 1,604 children and adolescents (4–18 years) from the comparison groups of two quasi-experimental intervention studies from Victoria, Australia were analysed<it>.</it> Sweet drink consumption (soft drink and fruit juice/cordial) was assessed as one day’s intake and typical intake over the last week or month at two time points between 2003 and 2008 (mean time between measurement: 2.2 years).</p> <p>Results</p> <p>Assessed using dietary recalls, more than 70% of the children and adolescents consumed sweet drinks, with no difference between age groups (p = 0.28). The median intake among consumers was 500 ml and almost a third consumed more than 750 ml per day. More children and adolescents consumed fruit juice/cordial (69%) than soft drink (33%) (p < 0.0001) and in larger volumes (median intake fruit juice/cordial: 500 ml and soft drink: 375 ml). Secular changes in sweet drink consumption were observed with a lower proportion of children and adolescents consuming sweet drinks at time 2 compared to time 1 (significant for age group 8 to <10 years, p = 0.001).</p> <p>Conclusion</p> <p>The proportion of Australian children and adolescents from the state of Victoria consuming sweet drinks has been stable or decreasing, although a high proportion of this sample consumed sweet drinks, especially fruit juice/cordial at both time points.</p

    Pediatric malignancies presenting as a possible infectious disease

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The clinical, laboratory, and radiological features of malignancy can overlap with those of infection. The purpose of this study was to determine the findings in children who were initially thought to have an infectious disease but ultimately proved to have a malignancy.</p> <p>Methods</p> <p>The database of patients diagnosed with a malignancy in the Northern Alberta Children's Cancer Program (NACCP) January 1, 1993 to December 31, 2003 was merged with the database of inpatients referred to the infectious diseases service at the Stollery Children's Hospital and charts were reviewed on all patients referred to the infectious diseases consult service prior to the diagnosis of malignancy.</p> <p>Results</p> <p>An infectious diseases consultation for diagnosis was requested in 21 of 561 patients prior to the confirmation of malignancy, and 3 of these 21 patients had both infection and malignancy (leukemia (N = 13), lymphoma (N = 3), rhabdomyosarcoma (N = 1), Langerhan's cell histiocytosis (N = 1), fibrous histicocytosis (N = 1), ependymoma (N = 1), and neuroblastoma (N = 1). The most common reason for infectious diseases consultation was suspected muskuloskeletal infection (N = 9). A palpable or radiographically enlarged spleen was noted in 11 patients (52%). All but 2 patients had abnormal hematologic parameters while an elevated lactate dehydrogenase (LDH) occurred in 10 patients (48%). Delay of diagnosis because of investigation or therapy for an infectious disease occurred in only 2 patients.</p> <p>Conclusion</p> <p>It is not common for treatment of pediatric malignancies to be delayed because infection is thought to be the primary diagnosis. However, pediatric infectious diseases physicians should consider malignancy in the differential diagnosis when they see patients with fever and bone pain, unexplained splenomegaly or abnormal complete blood cell counts. Other clues may include hepatomegaly or elevated LDH.</p

    Electrospun PLLA Nanofiber Scaffolds and Their Use in Combination with BMP-2 for Reconstruction of Bone Defects

    Get PDF
    Introduction Adequate migration and differentiation of mesenchymal stem cells is essential for regeneration of large bone defects. To achieve this, modern graft materials are becoming increasingly important. Among them, electrospun nanofiber scaffolds are a promising approach, because of their high physical porosity and potential to mimic the extracellular matrix (ECM). Materials and Methods The objective of the present study was to examine the impact of electrospun PLLA nanofiber scaffolds on bone formation in vivo, using a critical size rat calvarial defect model. In addition we analyzed whether direct incorporation of bone morphogenetic protein 2 (BMP-2) into nanofibers could enhance the osteoinductivity of the scaffolds. Two critical size calvarial defects (5 mm) were created in the parietal bones of adult male Sprague-Dawley rats. Defects were either (1) left unfilled, or treated with (2) bovine spongiosa, (3) PLLA scaffolds alone or (4) PLLA/BMP-2 scaffolds. Cranial CT-scans were taken at fixed intervals in vivo. Specimens obtained after euthanasia were processed for histology, histomorphometry and immunostaining (Osteocalcin, BMP-2 and Smad5). Results PLLA scaffolds were well colonized with cells after implantation, but only showed marginal ossification. PLLA/BMP-2 scaffolds showed much better bone regeneration and several ossification foci were observed throughout the defect. PLLA/BMP-2 scaffolds also stimulated significantly faster bone regeneration during the first eight weeks compared to bovine spongiosa. However, no significant differences between these two scaffolds could be observed after twelve weeks. Expression of osteogenic marker proteins in PLLA/BMP-2 scaffolds continuously increased throughout the observation period. After twelve weeks osteocalcin, BMP-2 and Smad5 were all significantly higher in the PLLA/BMP-2 group than in all other groups. Conclusion Electrospun PLLA nanofibers facilitate colonization of bone defects, while their use in combination with BMP-2 also increases bone regeneration in vivo and thus combines osteoconductivity of the scaffold with the ability to maintain an adequate osteogenic stimulus

    Monascus-Fermented Dioscorea Enhances Oxidative Stress Resistance via DAF-16/FOXO in Caenorhabditis elegans

    Get PDF
    BACKGROUND: Monascus-fermented products are mentioned in an ancient Chinese pharmacopoeia of medicinal food and herbs. Monascus-fermented products offer valuable therapeutic benefits and have been extensively used in East Asia for several centuries. Several biological activities of Monascus-fermented products were recently described, and the extract of Monascus-fermented products showed strong antioxidant activity of scavenging DPPH radicals. To evaluate whether Monascus-fermented dioscorea products have potential as nutritional supplements, Monascus-fermented dioscorea's modulation of oxidative-stress resistance and associated regulatory mechanisms in Caenorhabditis elegans were investigated. PRINCIPAL FINDINGS: We examined oxidative stress resistance of the ethanol extract of red mold dioscorea (RMDE) in C. elegans, and found that RMDE-treated wild-type C. elegans showed an increased survival during juglone-induced oxidative stress compared to untreated controls, whereas the antioxidant phenotype was absent from a daf-16 mutant. In addition, the RMDE reduced the level of intracellular reactive oxygen species in C. elegans. Finally, the RMDE affected the subcellular distribution of the FOXO transcription factor, DAF-16, in C. elegans and induced the expression of the sod-3 antioxidative gene. CONCLUSIONS: These findings suggest that the RMDE acts as an antioxidative stress agent and thus may have potential as a nutritional supplement. Further studies in C. elegans suggest that the antioxidant effect of RMDE is mediated via regulation of the DAF-16/FOXO-dependent pathway

    Beverage patterns and trends among school-aged children in the US, 1989-2008

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>High intake of sugar-sweetened beverages in childhood is linked to increased risk of obesity and type II diabetes later in life. Using three nationally representative surveys of dietary intake, we investigated beverage patterns and trends among US school-aged children from 1989/91 to 2007/08.</p> <p>Methods</p> <p>3, 583 participants ages 6-11 y old were included. We reported per capita trends in beverage consumption, percent consuming, and amount per consumer for the following categories of beverages: sugar-sweetened beverages (SSB), caloric nutritional beverages (CNB) and low calorie beverages (LCB). Statistically significant differences were tested using the Student's t test in Stata 11.</p> <p>Results</p> <p>While per capita kcal contribution from total beverages remained constant over the study period, per capita consumption of SSBs increased and CNBs decreased in similar magnitude. The substantial increase in consumption of certain SSBs, such as fruit drinks and soda, high fat high sugar milk, and sports drinks, coupled with the decrease in consumption of high fat low sugar milk was responsible for this shift. The percent consuming SSBs as well as the amount per consumer increased significantly over time. Per capita intake of total milk declined, but the caloric contribution from high fat high sugar milk increased substantially. Among ethnicities, important differences in consumption trends of certain SSBs and 100% juice indicate the complexity in determining strategies for children's beverage calorie reduction.</p> <p>Conclusions</p> <p>As upward trends of SSB consumption parallel increases in childhood obesity, educational and policy interventions should be considered.</p

    Aneuploidy in pluripotent stem cells and implications for cancerous transformation

    Get PDF
    Owing to a unique set of attributes, human pluripotent stem cells (hPSCs) have emerged as a promising cell source for regenerative medicine, disease modeling and drug discovery. Assurance of genetic stability over long term maintenance of hPSCs is pivotal in this endeavor, but hPSCs can adapt to life in culture by acquiring non-random genetic changes that render them more robust and easier to grow. In separate studies between 12.5% and 34% of hPSC lines were found to acquire chromosome abnormalities over time, with the incidence increasing with passage number. The predominant genetic changes found in hPSC lines involve changes in chromosome number and structure (particularly of chromosomes 1, 12, 17 and 20), reminiscent of the changes observed in cancer cells. In this review, we summarize current knowledge on the causes and consequences of aneuploidy in hPSCs and highlight the potential links with genetic changes observed in human cancers and early embryos. We point to the need for comprehensive characterization of mechanisms underpinning both the acquisition of chromosomal abnormalities and selection pressures, which allow mutations to persist in hPSC cultures. Elucidation of these mechanisms will help to design culture conditions that minimize the appearance of aneuploid hPSCs. Moreover, aneuploidy in hPSCs may provide a unique platform to analyse the driving forces behind the genome evolution that may eventually lead to cancerous transformation

    Protective Effect of Tetrahydroxystilbene Glucoside on 6-OHDA-Induced Apoptosis in PC12 Cells through the ROS-NO Pathway

    Get PDF
    Oxidative stress plays an important role in the pathogenesis of neurodegenerative diseases, such as Parkinson's disease. The molecule, 2,3,5,4′-tetrahydr- oxystilbene-2-O-β-D-glucoside (TSG), is a potent antioxidant derived from the Chinese herb, Polygonum multiflorum Thunb. In this study, we investigated the protective effect of TSG against 6-hydroxydopamine-induced apoptosis in rat adrenal pheochromocytoma PC12 cells and the possible mechanisms. Our data demonstrated that TSG significantly reversed the 6-hydroxydopamine-induced decrease in cell viability, prevented 6-hydroxydopamine-induced changes in condensed nuclei and decreased the percentage of apoptotic cells in a dose-dependent manner. In addition, TSG slowed the accumulation of intracellular reactive oxygen species and nitric oxide, counteracted the overexpression of inducible nitric oxide syntheses as well as neuronal nitric oxide syntheses, and also reduced the level of protein-bound 3-nitrotyrosine. These results demonstrate that the protective effects of TSG on rat adrenal pheochromocytoma PC12 cells are mediated, at least in part, by the ROS-NO pathway. Our results indicate that TSG may be effective in providing protection against neurodegenerative diseases associated with oxidative stress

    The Ras Antagonist, Farnesylthiosalicylic Acid (FTS), Decreases Fibrosis and Improves Muscle Strength in dy2J/dy2J Mouse Model of Muscular Dystrophy

    Get PDF
    The Ras superfamily of guanosine-triphosphate (GTP)-binding proteins regulates a diverse spectrum of intracellular processes involved in inflammation and fibrosis. Farnesythiosalicylic acid (FTS) is a unique and potent Ras inhibitor which decreased inflammation and fibrosis in experimentally induced liver cirrhosis and ameliorated inflammatory processes in systemic lupus erythematosus, neuritis and nephritis animal models. FTS effect on Ras expression and activity, muscle strength and fibrosis was evaluated in the dy2J/dy2J mouse model of merosin deficient congenital muscular dystrophy. The dy2J/dy2J mice had significantly increased RAS expression and activity compared with the wild type mice. FTS treatment significantly decreased RAS expression and activity. In addition, phosphorylation of ERK, a Ras downstream protein, was significantly decreased following FTS treatment in the dy2J/dy2J mice. Clinically, FTS treated mice showed significant improvement in hind limb muscle strength measured by electronic grip strength meter. Significant reduction of fibrosis was demonstrated in the treated group by quantitative Sirius Red staining and lower muscle collagen content. FTS effect was associated with significantly inhibition of both MMP-2 and MMP-9 activities. We conclude that active RAS inhibition by FTS was associated with attenuated fibrosis and improved muscle strength in the dy2J/dy2J mouse model of congenital muscular dystrophy
    corecore