34,788 research outputs found

    Space Alignment Based on Regularized Inversion Precoding in Cognitive Transmission

    Get PDF
    For a two-tier Multiple-Input Multiple-Output (MIMO) cognitive network with common receiver, the precoding matrix has a compact relationship with the capacity performance in the unlicensed secondary system. To increase the capacity of secondary system, an improved precoder based on the idea of regularized inversion for secondary transmitter is proposed. An iterative space alignment algorithm is also presented to ensure the Quality of Service (QoS) for primary system. The simulations reveal that, on the premise of achieving QoS for primary system, our proposed algorithm can get larger capacity in secondary system at low Signal-to-Noise Ratio (SNR), which proves the effectiveness of the algorithm

    Enrichment and characterization of a bacteria consortium capable of heterotrophic nitrification and aerobic denitrification at low temperature

    Get PDF
    Nitrogen removal in wastewater treatment plants is usually severely inhibited under cold temperature. The present study proposes bioaugmentation using psychrotolerant heterotrophic nitrification-aerobic denitrification consortium to enhance nitrogen removal at low temperature. A functional consortium has been successfully enriched by stepped increase in DO concentration. Using this consortium, the specific removal rates of ammonia and nitrate at 10 degrees C reached as high as 3.1 mg N/(g SS h) and 9.6 mg N/ (g SS h), respectively. PCR-DGGE and clone library analysis both indicated a significant reduction in bacterial diversity during enrichment. Phylogenetic analysis based on nearly full-length 16S rRNA genes showed that Alphaproteobacteria. Deltaproteobacteria and particularly Bacteroidetes declined while Gammaproteobacteria (all clustered into Pseudomonas sp.) and Betaproteobacteria (mainly Rhodoferax ferrireducens) became dominant in the enriched consortium. It is likely that Pseudomonas spp. played a major role in nitrification and denitrification, while R. ferrireducens and its relatives utilized nitrate as both electron acceptor and nitrogen source. Crown Copyright (C) 2012 Published by Elsevier Ltd. All rights reserved.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000312926400021&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=8e1609b174ce4e31116a60747a720701Agricultural EngineeringBiotechnology & Applied MicrobiologyEnergy & FuelsSCI(E)EIPubMed31ARTICLE151-15712

    SPSA-Based Tracking Method for Single-Channel-Receiver Array

    Get PDF
    A novel tracking method in the phased antenna array with a single-channel receiver for the moving signal source is presented in this paper. And the problems of the direction-of-arrival track and beamforming in the array system are converted to the power maximization of received signal in the free-interference conditions, which is different from the existing algorithms that maximize the signal to interference and noise ratio. The proposed tracking method reaches the global optimum rather than local by injecting the extra noise terms into the gradient estimation. The antenna beam can be steered to coincide with the direction of the moving source fast and accurately by perturbing the output of the phase shifters during motion, due to the high efficiency and easy implementation of the proposed beamforming algorithm based on the simultaneous perturbation stochastic approximation (SPSA). Computer simulations verify that the proposed tracking scheme is robust and effective

    The effect of Mach number on unstable disturbances in shock/boundary-layer interactions

    No full text
    The effect of Mach number on the growth of unstable disturbances in a boundary layer undergoing a strong interaction with an impinging oblique shock wave is studied by direct numerical simulation and linear stability theory (LST). To reduce the number of independent parameters, test cases are arranged so that both the interaction location Reynolds number (based on the distance from the plate leading edge to the shock impingement location for a corresponding inviscid flow) and the separation bubble length Reynolds number are held fixed. Small-amplitude disturbances are introduced via both white-noise and harmonic forcing and, after verification that the disturbances are convective in nature, linear growth rates are extracted from the simulations for comparison with parallel flow LST and solutions of the parabolized stability equations (PSE). At Mach 2.0, the oblique modes are dominant and consistent results are obtained from simulation and theory. At Mach 4.5 and Mach 6.85, the linear Navier-Stokes results show large reductions in disturbance energy at the point where the shock impinges on the top of the separated shear layer. The most unstable second mode has only weak growth over the bubble region, which instead shows significant growth of streamwise structures. The two higher Mach number cases are not well predicted by parallel flow LST, which gives frequencies and spanwise wave numbers that are significantly different from the simulations. The PSE approach leads to good qualitative predictions of the dominant frequency and wavenumber at Mach 2.0 and 4.5, but suffers from reduced accuracy in the region immediately after the shock impingement. Three-dimensional Navier-Stokes simulations are used to demonstrate that at finite amplitudes the flow structures undergo a nonlinear breakdown to turbulence. This breakdown is enhanced when the oblique-mode disturbances are supplemented with unstable Mack modes

    Erosion-induced CO2 flux of small watersheds

    Get PDF
    Soil erosion not only results in severe ecological damage, but also interferes with soil organic carbon formation and decomposition, influencing the global green-house effect. However, there is controversy as to whether a typical small watershed presumed as the basic unit of sediment yield acts as a CO2 sink or source. This paper proposes a discriminant equation for the direction of CO2 flux in small watersheds, basing on the concept of Sediment Delivery Ratio (SDR). Using this equation, watersheds can be classified as Sink Watersheds, Source Watersheds, or Transition Watersheds, noting that small watersheds can act either as a CO2 sink or as a CO2 source. A mathematical model for calculating the two discriminant coefficients in the equation is set up to analyze the conditions under which each type of watershed would occur. After assigning the model parameter values at three levels (low, medium, and high), and considering 486 scenarios in total, the influences are examined for turnover rate of the carbon pool, erosion rate, deposition rate, cultivation depth and period. The effect of adopting conservation measures like residue return, contour farming, terracing, and conservation tillage is also analyzed. The results show that Sink Watersheds are more likely to result in conditions of high erosion rate, long cultivation period, high deposition rate, fast carbon pool turnover rate, and small depth of cultivation; otherwise, Source Watersheds would possibly occur. The results also indicate that residue return and conservation tillage are beneficial for CO2 sequestration. (C) 2012 Elsevier B.V. All rights reserved.Geography, PhysicalGeosciences, MultidisciplinarySCI(E)EI0ARTICLE101-11094-9

    Tensor coupling effects on spin symmetry in anti-Lambda spectrum of hypernuclei

    Full text link
    The effects of ΛˉΛˉω\bar\Lambda\bar\Lambda\omega-tensor coupling on the spin symmetry of Λˉ\bar{\Lambda} spectra in Λˉ\bar{\Lambda}-nucleus systems have been studied with the relativistic mean-field theory. Taking 12^{12}C+Λˉ\bar{\Lambda} as an example, it is found that the tensor coupling enlarges the spin-orbit splittings of Λˉ\bar\Lambda by an order of magnitude although its effects on the wave functions of Λˉ\bar{\Lambda} are negligible. Similar conclusions has been observed in Λˉ\bar{\Lambda}-nucleus of different mass regions, including 16^{16}O+Λˉ\bar{\Lambda}, 40^{40}Ca+Λˉ\bar{\Lambda} and 208^{208}Pb+Λˉ\bar{\Lambda}. It indicates that the spin symmetry in anti-lambda-nucleus systems is still good irrespective of the tensor coupling.Comment: 12 pages, 3 figures

    Loss Guided Activation for Action Recognition in Still Images

    Full text link
    One significant problem of deep-learning based human action recognition is that it can be easily misled by the presence of irrelevant objects or backgrounds. Existing methods commonly address this problem by employing bounding boxes on the target humans as part of the input, in both training and testing stages. This requirement of bounding boxes as part of the input is needed to enable the methods to ignore irrelevant contexts and extract only human features. However, we consider this solution is inefficient, since the bounding boxes might not be available. Hence, instead of using a person bounding box as an input, we introduce a human-mask loss to automatically guide the activations of the feature maps to the target human who is performing the action, and hence suppress the activations of misleading contexts. We propose a multi-task deep learning method that jointly predicts the human action class and human location heatmap. Extensive experiments demonstrate our approach is more robust compared to the baseline methods under the presence of irrelevant misleading contexts. Our method achieves 94.06\% and 40.65\% (in terms of mAP) on Stanford40 and MPII dataset respectively, which are 3.14\% and 12.6\% relative improvements over the best results reported in the literature, and thus set new state-of-the-art results. Additionally, unlike some existing methods, we eliminate the requirement of using a person bounding box as an input during testing.Comment: Accepted to appear in ACCV 201

    Properties of the phi meson at high temperatures and densities

    Full text link
    We calculate the spectral density of the phi meson in a hot bath of nucleons and pions using a general formalism relating self-energy to the forward scattering amplitude (FSA). In order to describe the low energy FSA, we use experimental data along with a background term. For the high energy FSA, a Regge parameterization is employed. We verify the resulting FSA using dispersion techniques. We find that the position of the peak of the spectral density is slightly shifted from its vacuum position and that its width is considerably increased. The width of the spectral density at a temperature of 150 MeV and at normal nuclear density is more than 90 MeV.Comment: 4 pages, 5 figures, Poster presented at Quark Matter 200
    corecore