

THE UNIVERSITY of EDINBURGH

Edinburgh Research Explorer

Erosion-induced CO2 flux of small watersheds

Citation for published version:

Ni, J, Yue, Y, Borthwick, AGL, Li, T, Miao, C & He, X 2012, 'Erosion-induced CO2 flux of small watersheds' Global and planetary change, vol 94-95, pp. 101-110., 10.1016/j.gloplacha.2012.07.003

Digital Object Identifier (DOI):

10.1016/j.gloplacha.2012.07.003

Link:

Link to publication record in Edinburgh Research Explorer

Document Version: Other version

Published In: Global and planetary change

General rights

Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.

Elsevier Editorial System(tm) for Global and Planetary Change Manuscript Draft

Manuscript Number:

Title: Erosion-induced CO2 flux of world's small watersheds

Article Type: Research Paper

Keywords: CO2 flux; soil erosion; watershed classification

Corresponding Author: Prof. Jinren Ni, Ph.D.

Corresponding Author's Institution: Peking University

First Author: Jinren Ni, Ph. D.

Order of Authors: Jinren Ni, Ph. D.; Yao Yue; Alistair Borthwick, Ph. D.; Tianhong Li, Ph. D.; Chiyuan Miao, Ph. D.

Abstract: Soil erosion not only results in severe ecological damage, but also interferes with soil organic carbon formation and decomposition, influencing the global green-house effect. However, there is controversy as to whether a typical small watershed presumed as the basic unit of sediment yield acts as a CO2 sink or source. This paper proposes a discriminant equation for the direction of CO2 flux in small watersheds, using the concept of Sediment Delivery Ratio (SDR). Using this equation, a watershed can be classified as a Sink Watershed, a Source Watershed, or a Transition Watershed, noting that small watersheds can act either as a CO2 sink or as a CO2 source. A mathematical model is used to analyze how natural and anthropogenic factors affect the type of CO2 flux. After assigning each factor (turnover rate of the carbon pool, erosion rate, deposition rate, cultivation depth and period) values at three levels (low, medium, and high), and combining 243 scenarios, the influence of increasing or decreasing crop residue return is also analyzed. The results show that low erosion rate, short cultivation period, low depositional rate, slow carbon pool turnover rate, and deep cultivation depth are unfavorable for the formation of the Sink Watershed; a decreased residue return by 30 % may result in transformation towards the Source Watershed; an increased residue return by 30 % may strengthen the basic CO2 sink by a factor ranging from 2.4 to 5.4.

Dear Editor:

We would like to submit the enclosed manuscript entitled "Erosion-induced CO_2 flux of world's small watersheds", which we wish to be considered for publication in "Global and Planetary Change".

There is controversy as to whether a typical small watershed acts as a CO_2 sink or source. This paper proposed a discriminant equation for the direction of CO_2 flux in small watersheds, and found that a watershed can be classified as a *Sink Watershed*, a *Source Watershed*, or a *Transition Watershed*, noting that small watersheds can act either as a CO_2 sink or as a CO_2 source. A mathematical model is used to analyze how natural and anthropogenic factors affect the type of CO_2 flux. The present paper will possibly contribute to our understanding of CO_2 flux control.

The work described has not been submitted elsewhere for publication, and all authors have seen the manuscript and approved to submit to your journal. Thank you very much for your attention and consideration.

Sincerely yours,

Prof. Jinren Ni

Department of Environmental Engineering, Peking University, P. R. China

We propose a discriminant equation for the direction of CO_2 flux in small watersheds. The world's watersheds can be classified into source, sink, or transition watersheds. We model how natural and anthropogenic factors affect a watershed's type of CO_2 flux.

1	Erosion-induced CO ₂ flux of world's small watersheds
2	
3	Jinren Ni ^{a,*} , Yao Yue ^a , Alistair G.L. Borthwick ^b , Tianhong Li ^a , Chiyuan Miao ^c
4	^a Department of Environmental Engineering, Peking University, Beijing 100871, PR
5	China
6	^b Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1
7	3PJ, UK
8	^c Global Change and Earth System Science, Beijing Normal University, Beijing
9	100875, PR China
10	[*] Corresponding author. Tel.: +86 10 62751185; fax: +86 10 62756526.
11	E-mail addresses: nijinren@iee.pku.edu.cn (J. Ni), yueyao@iee.pku.edu.cn (Y. Yue),
12	alistair.borthwick@eng.ox.ac.uk (A. G. L. Borthwick), litianhong@iee.pku.edu.cn (T.
13	Li), miaocy@vip.sina.com (C. Miao).
14	
15	Abstract. Soil erosion not only results in severe ecological damage, but also
16	interferes with soil organic carbon formation and decomposition, influencing the
17	global green-house effect. However, there is controversy as to whether a typical
18	small watershed presumed as the basic unit of sediment yield acts as a CO ₂ sink or
19	source. This paper proposes a discriminant equation for the direction of CO_2 flux in
20	small watersheds, using the concept of Sediment Delivery Ratio (SDR). Using this
21	equation, a watershed can be classified as a Sink Watershed, a Source Watershed, or a
22	Transition Watershed, noting that small watersheds can act either as a CO ₂ sink or as a

23	CO_2 source. A mathematical model is used to analyze how natural and
24	anthropogenic factors affect the type of CO ₂ flux. After assigning each factor
25	(turnover rate of the carbon pool, erosion rate, deposition rate, cultivation depth and
26	period) values at three levels (low, medium, and high), and combining 243 scenarios,
27	the influence of increasing or decreasing crop residue return is also analyzed. The
28	results show that low erosion rate, short cultivation period, low depositional rate, slow
29	carbon pool turnover rate, and deep cultivation depth are unfavorable for the
30	formation of the Sink Watershed; a decreased residue return by 30 % may result in
31	transformation towards the Source Watershed; an increased residue return by 30 %
32	may strengthen the basic CO_2 sink by a factor ranging from 2.4 to 5.4.
33	Key words: CO ₂ flux; soil erosion; watershed classification
34	
35	1. Introduction
35 36	1. Introduction
35 36 37	 Introduction Soil plays an important part in the global carbon cycle. Soil comprises an
35 36 37 38	 Introduction Soil plays an important part in the global carbon cycle. Soil comprises an enormous carbon pool of about 1200 ~ 2500 Gt C (see e.g. Schlesinger, 1991; Balino
 35 36 37 38 39 	 Introduction Soil plays an important part in the global carbon cycle. Soil comprises an enormous carbon pool of about 1200 ~ 2500 Gt C (see e.g. Schlesinger, 1991; Balino et al., 2001) that actively exchanges about 60 Gt C per annum with the atmosphere
 35 36 37 38 39 40 	 Introduction Soil plays an important part in the global carbon cycle. Soil comprises an enormous carbon pool of about 1200 ~ 2500 Gt C (see e.g. Schlesinger, 1991; Balino et al., 2001) that actively exchanges about 60 Gt C per annum with the atmosphere (Balino et al., 2001). Lal (1995; 2003) suggests that, by interfering with the process
 35 36 37 38 39 40 41 	 Introduction Soil plays an important part in the global carbon cycle. Soil comprises an enormous carbon pool of about 1200 ~ 2500 Gt C (see e.g. Schlesinger, 1991; Balino et al., 2001) that actively exchanges about 60 Gt C per annum with the atmosphere (Balino et al., 2001). Lal (1995; 2003) suggests that, by interfering with the process of soil carbon formation and decomposition, erosion brings about extra CO₂ fluxes
 35 36 37 38 39 40 41 42 	1. Introduction Soil plays an important part in the global carbon cycle. Soil comprises an enormous carbon pool of about 1200 ~ 2500 Gt C (see e.g. Schlesinger, 1991; Balino et al., 2001) that actively exchanges about 60 Gt C per annum with the atmosphere (Balino et al., 2001). Lal (1995; 2003) suggests that, by interfering with the process of soil carbon formation and decomposition, erosion brings about extra CO ₂ fluxes that either exacerbate or alleviate the global green-house effect depending on whether
 35 36 37 38 39 40 41 42 43 	1. Introduction Soil plays an important part in the global carbon cycle. Soil comprises an enormous carbon pool of about 1200 ~ 2500 Gt C (see e.g. Schlesinger, 1991; Balino et al., 2001) that actively exchanges about 60 Gt C per annum with the atmosphere (Balino et al., 2001). Lal (1995; 2003) suggests that, by interfering with the process of soil carbon formation and decomposition, erosion brings about extra CO ₂ fluxes that either exacerbate or alleviate the global green-house effect depending on whether the fluxes are into or out of the soil. Carbon fluxes between ground and atmosphere

45	(SOC) is synthesized or mineralized via biological pathway. All the processes can
46	be greatly influenced by erosion. The overland runoff absorbs CO_2 at a magnitude
47	of 0.26 ~ 0.30 Gt C per annum by weathering certain inorganic constituents of soil
48	(like silicate and carbonate) (Berner et al., 1983; Meybeck, 1982; Amiotte Suchet et
49	al., 1995). The organic process which involves all the three stages of detachment,
50	transport, and deposition can be more complicated. In the erosion region, with the
51	decrease of soil fertility due to organic carbon loss in the top layer, crop residue
52	returning into the soil carbon pool also declines (Lal et al., 2004(b)). Simultaneously,
53	the decomposition of organic carbon slows down because of the decrease in fresh
54	carbon supply (Fontaine et al., 2007). It may also be the case that newly bared
55	mineral substances in the top layer could stabilize the SOC, and thus slow down the
56	rate of degradation (Quinton et al., 2010). During sediment transport, the soil
57	particles break down accelerating the decomposition of SOC (Jacinthe et al., 2002;
58	Polyakov and Lal, 2008; Alewell et al., 2009). However, the extra CO ₂ flux
59	generated by this process may not be very significant (Van Hemelryck, et al., 2010;
60	2011). Terrestrial deposition of sediment enriches SOC, and consequently increases
61	the emission of CO_2 . On the other hand, the newly deposited sediment covers the
62	original top soil in the deposition region, effectively inhibiting decomposition (Berhe
63	et al., 2007). Moreover, deposition contributes to the aggregation of soil. In this
64	way, SOC formation and CO ₂ sequestration are promoted. Unlike terrestrial
65	deposition, sediment deposited in reservoirs, lakes, rivers and wetlands is protected
66	from oxidation because of the anaerobic environment (Cole et al., 2007;

Aufdenkampe et al., 2011). However, Lal et al. (2004(b)) observe that CH_4 (another greenhouse gas) could be released as a product of anaerobic decomposition in water. Stallard (1998) points out that sediment deposited in reservoirs, lakes and wetlands nevertheless has the potential to grow plants, sequestering CO_2 through photosynthesis.

Although the inorganic process during erosion is becoming better understood, 72 agreement has not yet been reached as to whether the soil organic carbon pool acts 73 under erosion as a CO₂ source or sink. Lal (1995; 2003) calculates that the global 74 75 CO_2 source induced by erosion is $0.8 \sim 1.2$ Gt C per annum. However, Smith et al. (2001) suggest that the erosion-induced CO_2 sink is about 1.0 Gt C per annum. Ciais 76 et al. (2010) estimate that cropland in Europe as a whole acts as a CO_2 source of 20 g 77 C m⁻² yr⁻¹ in the long run. Dymond (2010) estimates that New Zealand has a CO_2 78 sink of 3.1 Mt per annum, mitigating its fuel burning emissions by 45 %. Billings et 79 al. (2011) conclude that whether SOC erosion acts as a sink or source depends largely 80 81 on the final fate of the eroded soil. Since soil erosion is a multi-scale process which involves a series of steps (Harden et al., 2008), every single CO₂-related mechanism 82 of each step at each scale should be studied to detect fully the total erosion-induced 83 CO₂ flux. 84

As the basic unit of sediment yield, the watershed is the starting point for research into CO₂ flux during erosion. Yet, the role of watersheds in the carbon cycle is not clear. Van Oost et al. (2007) studied several small watersheds (< 15 hm²) in Europe and America. By comparing observed soil carbon inventories (C_{obv} , g m⁻²)

89	with simulated carbon inventories under the assumption that no vertical carbon
90	exchanges occur (C_{sim} , g m ⁻²), Van Oost et al. discovered that the watersheds studied
91	were sinks of erosion-induced CO_2 fluxes. By direct extrapolation, Van Oost et al.
92	calculated the world's total CO_2 sink to be 0.12 Pg C yr ⁻¹ . This viewpoint is
93	supported by Renwick et al. (2004) and Harden et al. (2008), whereas Lal et al.
94	(2004(a)) and Alewell et al. (2009) insist that SOC in an erosion region decomposes at
95	a higher rate, acting as a CO_2 source. Although Van Oost et al. (2007) designed an
96	ingenious experiment from which they derived convincing conclusions, it should be
97	noted that extrapolation from local regions to the global scale may not hold true, due
98	to significant effects on erosion-induced CO ₂ fluxes from spatial variations in natural
99	and anthropogenic factors like vegetation, microbial decomposition rate, soil
100	structures, erosion intensity and cultivation activities. Proper consideration of these
101	variations could lead to different conclusions than obtained by Van Oost et al. The
102	following question needs to be answered. Can it be determined whether a particular
103	watershed in the erosion region acts as a CO_2 sink or source? Following Van Oost et
104	al. (2007), the present paper considers the spatial variations of both natural and
105	anthropogenic factors and sets up a discriminant equation for identifying the type of
106	CO ₂ flux that occurs in a given small watershed, based on the concept of Sediment
107	Delivery Ratio (SDR). We try to provide a possible explanation aimed towards
108	resolving the present controversy. To analyze the impacts of vegetation, microbial
109	decomposition, soil structure, erosion intensity and human cultivation on CO ₂ flux of
110	a watershed, a parameter study involving 243 scenarios has been undertaken using a

mathematical model of the slow carbon pool in the soil. The effect of twomanagement measures is also evaluated.

113

114

2. Discriminant equation for the type of CO₂ flux in a watershed

115

116 Van Oost et al. (2007) divide the total CO₂ flux F_A (g C yr⁻¹) of a watershed into 117 two parts: the flux at erosion sites F_E (g C yr⁻¹), and the flux at deposition sites F_D (g 118 C yr⁻¹):

119

$$F_A = F_E + F_D, \tag{1}$$

in which positive values of F_A , F_E , and F_D indicate CO₂ absorption, while negative 120 values represent CO₂ emission. By comparing the difference between observed 121 carbon inventories C_{oby} (g C m⁻²) and simulated carbon inventories under the 122 assumption that no vertical carbon flux occurs C_{sim} (g C m⁻²), Van Oost et al. obtained 123 values of F_E and F_D for ten watersheds in Europe and America. They also 124 discovered that the vertical fluxes (F_E, F_D) are linearly related to the lateral fluxes (E_C, F_D) 125 D_C , g C yr⁻¹), with the linear coefficients being 0.11 ~ 0.55 and -0.24 ~ 0.21. The 126 average values of the two coefficients over all the sampled watersheds are 0.26 and 0. 127 Accordingly, Van Oost et al. calculated the total CO₂ flux of the world's small 128 watersheds to be 0.12 Pg C per annum, and concluded that small watersheds as a 129 whole act as a tiny CO₂ sink. However, because of the spatial variations of both 130 natural and anthropogenic factors, the ratios between the vertical and lateral fluxes in 131 other watersheds may be different, and the ten sampled watersheds in Europe and 132

America cannot represent the overall situation of the world. Stallard (1998) suggests that the sequestration ratio may vary from 0 to 100 % globally; Boix-Fayos et al. (2009) discovered that the sequestration ratio gradually increases to 36 % in the vegetation restoration regions. Moreover, the coefficients obtained by Van Oost et al. display evident differences among the ten watersheds considered. When the coefficients change (not 0.26 or 0), the direction and intensity of erosion-induced CO_2 flux in small watershed need re-evaluation.

140 Let α and β represent ratios of the vertical carbon flux to the lateral carbon flux 141 in the watershed:

$$\alpha = \frac{F_E}{E_c},\tag{2}$$

143 and

142

 $\beta = \frac{F_{D}}{D_{c}},\tag{3}$

so that

146 $F_A = \alpha E_C + \beta D_C, \tag{4}$

147 given

148

$$D_C = E_C - T_C,\tag{5}$$

149 where T_C is the organic carbon exported out of the watershed (g C yr⁻¹). Thus:

150
$$F_A = \alpha E_C + \beta (E_C - T_C). \tag{6}$$

151 Dividing Equation (6) by T_C :

152
$$\frac{F_{A}}{T_{c}} = \alpha \frac{E_{c}}{T_{c}} + \beta \left(\frac{E_{c}}{T_{c}} - 1\right) \qquad (7)$$

153 Note that the left side of Equation (7) represents the ratio of carbon vertically 154 exported from the watershed via CO_2 emission (F_A) to SOC laterally exported out of the region with sediment (T_C). When the ratio is positive, the watershed represents a CO₂ sink, and vice versa. The absolute value of the ratio represents the relative intensity of CO₂ emission / absorption. Thus, the ratio F_A/T_C can be regarded as an indicator of the characteristics of the erosion-induced CO₂ flux in the watershed, and we name it the Exported Carbon Ratio (*ECR*). In short,

$$ECR = \frac{F_A}{T_C}$$
(8)

161 According to Equation (8), the total CO_2 flux of a watershed can be easily calculated 162 by multiplying *ECR* by T_C obtained from the lower end of the watershed. It should 163 be noted that

 $E_C = SOC_E E_S$

- 164
- 165

and

166

$$T_C = SOC_T T_S, \tag{10}$$

(9)

where SOC_E and SOC_T are the organic carbon content within the eroded soil and exported sediments respectively (g kg⁻¹), E_S and T_S are the amount of soil erosion and sediment transport (kg yr⁻¹). Given that the scale of the watershed is very small, it takes a short time for the eroded soil to arrive at the lower end of the watershed. So it is reasonable to suppose that:

174

$$SOC_E = SOC_T.$$
 (11)

173 Thus,

$$\frac{\underline{E}_c}{T_c} = \frac{\underline{E}_s}{T_s} = \frac{1}{SDR} \quad , \tag{12}$$

where *SDR* is the Sediment Delivery Ratio of the watershed, which can vary between0 and 1.

177	Combining Equation (8) and Equation (12), the discriminant equation for CO_2
178	flux type is as follows:
179	$ECR = \frac{\alpha + \beta}{SDR} - \beta . \tag{13}$
180	Equation (13) shows that, the indicator for CO_2 flux characteristics (i.e. direction and
181	intensity), ECR, varies with α , β , and SDR. In practice, the equation can be used to
182	discriminate the characteristics of the CO ₂ flux for a given watershed.
183	
184	3. Discrimination of CO ₂ flux type in small watersheds
185	
186	3.1. Classification of watershed based on characteristics of CO_2 flux
187	
188	The above expression for <i>ECR</i> has the form of a hyperbola. Theoretically, <i>ECR</i>
189	has 4 forms according to the values of α and β :
190	Form (1): $\alpha + \beta > 0, \alpha > 0;$
191	Form (2): $\alpha + \beta > 0, \alpha < 0;$
192	Form (3): $\alpha + \beta < 0, \alpha > 0;$
193	Form (4): $\alpha + \beta < 0, \alpha < 0;$
194	In practice, Form (2) cannot exist, because:
195	$\alpha = \frac{(I_{c,E} - O_{c,E})A_E}{E_c} \tag{14}$
196	and
197	$\beta = \frac{(I_{c,D} - O_{c,D})A_D}{D_c} , \qquad (15)$

where I_C is the input intensity of CO₂ from the atmosphere to soil (g C yr⁻¹), O_C is the output intensity of CO₂ from the soil to atmosphere (g C yr⁻¹); *A* is the area in m²; and the subscripts E and D represent erosion and deposition respectively. Within any given small watershed, the input and intensity of CO₂ through photosynthesis at both the eroding and the depositional sites can be presumed to be the same, so that

203
$$I_{C, E} = I_{C, D}.$$
 (16)

The oxidation rate of SOC obeys first order dynamics. Within a single small watershed, the first order oxidation coefficient k_0 (yr⁻¹) leads to equal erosion and deposition oxidation rates, such that

$$O_{C,E} = k_0 C_E \tag{17}$$

208

and

209
$$O_{C, D} = k_0 C_D,$$
 (18)

210 where C_E and C_D are the carbon inventories at the eroding and depositional sites (g C 211 m⁻²). In general,

- $C_E \leq C_D,\tag{19}$
- so that

212

214

$$I_{C,E} - O_{C,E} \ge I_{C,E} - O_{C,E}.$$
(20)

215 That is, if $\alpha < 0$, then $\beta < 0$. Therefore, $\alpha + \beta$ is also smaller than 0. Form (2) does 216 not exist.

Fig. 1 shows how *ECR* changes with *SDR* for each of the three types of watershed. A watershed represented by Form (1) is always a CO_2 sink, whatever the value of *SDR*, and we call it a *Sink Watershed*. A watershed of Form (3)

220	transitions from a CO_2 source to a sink with SDR increasing from 0 to 1, and is
221	termed a Transition Watershed. A watershed represented by Form (4) is always a
222	CO_2 source no matter the value of <i>SDR</i> , and is called a <i>Source Watershed</i> . For a
223	Sink Watershed, ECR decreases as SDR increases. When SDR is equal to 1, ECR
224	has a minimum value of α . So α reflects the basic capability for CO ₂ sequestration
225	of a Sink Watershed. The decreasing gradient of the line from $ECR _{SDR=1}$ to
226	$ECR _{SDR=0.5}$, $ 2 \cdot (\alpha + \beta) $ indicates the sensitivity of CO ₂ sequestration to the change in
227	SDR. The ECR of the Transition Watershed is positively correlated with SDR.
228	The critical <i>SDR</i> where $ECR = 0$ in the Transition Watershed is given by $SDR_{cr} = 1 + 1$
229	α/β . An increase in α or decrease in β makes the critical point move to the right.
230	When $SDR < SDR_{cr}$, the watershed acts as a CO ₂ source; however, when $SDR >$
231	SDR_{cr} , the watershed acts as a CO ₂ sink. In the Source Watershed, ECR increases
232	as SDR increases. When SDR is equal to 1, ECR reaches its maximum value of α .
233	So α reflects the basic capability for CO ₂ emission of a Source Watershed. The
234	gradient of the line from $ECR _{SDR=1}$ to $ECR _{SDR=0.5}$, $ 2 \cdot (\alpha + \beta) $ again indicates the
235	sensitivity of CO_2 emission to changes in <i>SDR</i> .

236

3.2. A possible answer to the present controversy: whether a small watershed a sink
or source?

239

According to the Discriminant Equation for CO_2 flux type, a watershed can be either a CO_2 source (the Source Watershed or the source part of the Transition

242	Watershed), or a CO_2 sink (the Sink Watershed or the sink part of the Transition
243	Watershed). Using experimental data from small watersheds published in the open
244	literature it is possible to discriminate the CO_2 flux type for each catchment. Tables
245	1 and 2 list the discriminant parameters of typical Sink Watersheds and typical Source
246	Watersheds.
247	
248	4. Factors that influence the type of CO ₂ flux in a watershed
249	
250	4.1. Slow carbon pool model
251	
252	Next a mathematical model is applied to study how natural and anthropogenic
253	factors affect the classification of CO_2 flux in a watershed. According to the
254	turnover time, the soil carbon pool can be classified into a rapid carbon pool which
255	consists of debris and microbes (with a turnover time of less than 5 years (Potter et al.,
256	1993; Li et al., 1994)), a slow carbon pool (stored in the top 20 cm, with a turnover
257	time of decades to centuries), and a passive carbon pool (with a turnover time of
258	thousands of years) (Stallard, 1998), of which the slow carbon pool is directly affected
259	by cultivation and erosion. The change of the slow carbon pool can be described as
260	follows (Stallard 1998; Liu et al., 2003):
261	In the erosion region,

262

$$\frac{d \boldsymbol{C}_{E}}{dT} = \boldsymbol{I}_{B} - (\boldsymbol{k}_{E} + \boldsymbol{k}_{O}) \boldsymbol{C}_{E} + \boldsymbol{C}_{sub} \qquad , \qquad (21)$$

263 and in the deposition region,

$$\frac{d C_D}{dT} = I_B + I_D - k_O C_E - C_{sub} \quad , \tag{22}$$

where C_E (g m⁻²) and C_D (g m⁻²) are the carbon inventories in the erosion and 265 deposition regions respectively, T (yr) is the cultivation period, I_B (g m⁻² yr⁻¹) is the 266 carbon input intensity through photosynthesis, and I_D (g m⁻² yr⁻¹) is the deposition 267 intensity. Suppose that oxidation and erosion obey first order dynamics, and let k_0 268 (yr⁻¹) represent the first order coefficient of carbon oxidation through microbial 269 process, which also reflects the turnover rate of the slow carbon pool, k_E (yr⁻¹) is the 270 first order coefficient of erosion, and C_{sub} (g m⁻² yr⁻¹) is the flux from / to the lower 271 carbon pool due to the elevation change of the top layer through erosion or deposition. 272 C_{sub} can be calculated using the erosion (deposition) rate and the SOC distribution. 273 Given that: 274

275
$$F_E = (I_B - k_O C_E) A_E,$$
 (23)

276
$$F_D = (I_B - k_O C_D) A_D,$$
 (24)

$$E_C = k_E C_E A_E, \tag{25}$$

278 and

$$D_C = I_D A_D, \tag{26}$$

280 where
$$A_E$$
 and A_D (m²) represent the erosion and deposition areas respectively. Thus,
281 $\alpha = \frac{I_E - k_o C_E}{k_E C_E}$, (27)

282

283

279

and

$$\beta = \frac{I_{\scriptscriptstyle B} - k_{\scriptscriptstyle O} C_{\scriptscriptstyle D}}{I_{\scriptscriptstyle D}}$$
(28)

The average α and β during the cultivation period T (yr) are: 284

285
$$\overline{\alpha} = \frac{I_B T - k_O \int_0^T C_E dt}{k_E \int_0^T C_E dt}$$
(29)

$$\overline{\beta} = \frac{I_B T - k_O \int_0^T C_D dt}{\int_0^T I_D dt}$$
(30)

287

286

where I_D can be calculated using the depositional rate and the SOC profile.

288

289 *4.2 Model Validation*

290

The model was validated using data taken from Van Oost et al. (2007). Three watersheds with uniform sampling depth (0.5 m, see Fig. 2 for the profile of each watershed) were selected, and the input parameters for the model were derived from the ¹³⁷Cs and SOC inventories (Table 3).

Fig. 3 compares the modeled $\overline{\alpha}$, $\overline{\beta}$ (Equation (21), (22), (29), (30)) during the cultivation period with values directly obtained from field measurements. The results are in reasonable agreement, thus validating the slow carbon pool model.

- 298
- 299 *4.3. Sensitivity analysis*
- 300

 $I_B, k_O, D_{cul}, T, v_E$, and v_D are basic input parameters representing the input intensity through photosynthesis, turnover rate of the slow carbon pool, cultivation depth, cultivation period, the yearly erosion depth and deposition depth respectively. Other parameters can be derived from these basic ones (see notes below Table 3). Since erosion provides the material for deposition, v_D should be closely related to v_E . 306

Suppose the following linear relationship holds between v_E and v_D :

$$\frac{v_D}{v_E} = k_R \tag{31}$$

where k_R is a deposition coefficient representing the deposition intensity. Then, v_D 308 can be written as a function of v_E and k_R . Herein, I_B , k_O , D_{cul} , T, v_E , and k_R were 309 assigned the average of the values obtained by Van Oost et al. (2007), and then altered 310 by ± 20 %, one at a time. The results show that α is insensitive to I_B and k_R , and is 311 positively correlated to T, k_O , D_{cul} , and v_E . The three factors with greatest influence 312 on α are T (±17.1 %), k_O (±11.8 %), and D_{cul} (±8.8 %). The coefficient of β is 313 positively correlated with k_0 and D_{cul} , and negatively correlated with v_E , T, and k_R . It 314 is insensitive to I_B , but most affected by D_{cul} (±59.8 %), v_E (∓45.6 %), and T 315 $(\pm 36.4 \%)$. Note that cultivation period and depth have the largest influence on for 316 both α and β , which implies that anthropogenic factors are most important in 317 determining the type of CO_2 flux in watersheds. It should therefore be possible to 318 control CO₂ flux through changing human activities. The significant influence of 319 cultivation period on α can be explained by examining the derivative of Equation 320 (27): 321

$$d\alpha = -\frac{I_B}{k_E C_E^2} dC_E$$
(32)

323 and dividing by α to obtain

324
$$\frac{d\alpha}{\alpha} = -\frac{I_B}{I_B - k_E C_E} \frac{d C_E}{C_E} \qquad (33)$$

325 In general (where erosion is not extremely severe),

$$\frac{I_B}{I_B - k_E C_E} > 1 \qquad . \tag{34}$$

So, the variation becomes magnified as time passes. Inserting the values for eachparameter in the sensitivity analysis, leads to

$$\frac{d\alpha}{\alpha} = 2.47 \frac{dC_E}{C_E}$$
(35)

Equation (35) demonstrates the magnification effect. The influence of cultivation period on β can be similarly explained. D_{cul} exerts influence on α and β through k_E . Since $k_E = v_E/D_{cul}$, the same variation in D_{cul} leads to a larger change in k_E compared to v_E .

334

329

335 *4.4. Scenario Analysis*

336

A series of scenarios has been conducted in order to study the conditions under 337 which each of the three types of watersheds occur. Table 4 lists the range of values 338 of k_0 , D_{cul} , T, v_E , and k_R selected as key factors that determine the type of a 339 watershed (given that α and β are both insensitive to I_B). First, the input intensity is 340 kept constant ($I_B \equiv 75 \text{ g C m}^{-2} \text{ yr}^{-1}$, (Van Oost et al., 2007)), and three levels of values 341 (high, medium and low, Table 5) are selected within the range of each factor in order 342 to calculate the CO_2 flux type for every single combination. Then, the input 343 intensity is varied over the cultivation period (100 yr, while keeping k_0 , D_{cul} , v_E , and 344 k_R at medium level) to simulate the impact of changing residue return on the CO₂ flux 345 type in a watershed (reduced or increased by 30 % respectively). 346

347	(1) Steady input conditions. A total of 243 scenarios are combined according to
348	the parameters listed in Table 5. The results are summarized in Table 6. It appears
349	that choice of the lowest value of erosion intensity ($v_E = 0.0001$ m/yr) always leads to
350	a Transition Watershed, regardless of the values assigned to the other parameters
351	(within the range considered). Choice of the highest value of erosion intensity ($v_E =$
352	0.01 m/yr) invariably leads to a Sink Watershed. The conclusion that erosion
353	promotes CO_2 sequestration is supported by Liu et al. (2003). This is mainly
354	because erosion progressively exposes soil containing lower and more stable carbon,
355	diminishing CO ₂ emissions. In the region where erosion intensity is moderate ($v_E =$
356	0.001 m/yr), the period of cultivation becomes the primary impact factor. A medium
357	or long cultivation period (50 yr, 100 yr) leads to a Sink Watershed, whereas a short
358	cultivation period (25 yr) results in either a Transition Watershed or a Sink Watershed.
359	Liu et al. (2003) also pointed out that CO_2 emissions decreased while CO_2
360	sequestration increased as time passed. When v_E and T were set to 0.001 m/yr and
361	25 yr respectively, it can be seen that regions with a high depositional coefficient ($k_R =$
362	1.05) are all Sink Watersheds, whereas regions with low depositional coefficient ($k_R =$
363	0.35) are all Transition Watersheds. This is due to the hiding effect of deposited
364	sediment on the lower soil layer, which inhibits carbon decomposition, and is more
365	effective in regions with a high depositional coefficient. In watersheds with a
366	medium depositional coefficient ($k_R = 0.7$), the turnover rate (k_O) plays the
367	determining role. For low or medium values of k_0 (0.01 yr ⁻¹ or 0.02 yr ⁻¹), a
368	Transition Watershed occurs. However, a high turnover rate ($k_0=0.04 \text{ yr}^{-1}$) results in

either a Sink Watershed or a Transition Watershed. Next, by setting $k_R = 0.7$ and k_O 369 $= 0.04 \text{ yr}^{-1}$, it appears that the cultivation depth begins to act as the key factor. When 370 D_{cul} is shallow or modest ($D_{cul} = 0.1$ or 0.2 m), a sink Watershed results. A 371 Transition Watershed occurs in scenarios involving a relatively large cultivation depth 372 $(D_{cul} = 0.3 \text{ m})$. This is because a more shallow cultivation depth corresponds to a 373 higher erosion coefficient (k_E) when the erosion rate is the same, and thus is beneficial 374 for CO₂ sequestration. In summary, no Source Watershed appears under the steady 375 input scenario. Conditions of low erosion intensity, short cultivation period, low 376 377 depositional coefficient, slow carbon pool turnover rate, or large cultivation depth are unfavorable for the formation of a Sink Watershed. It is important that basin 378 management is not mono-targeted. Instead, a holistic analysis is required taking into 379 380 account the effect of CO₂ flux control in terms of the economic, social, and environmental impacts (Lal, 2010). For example, erosion intensity should not be 381 increased solely for the *ex parte* purpose of reducing CO₂ emissions. 382

383 (2) Sudden change in residue return. Fig. 4 illustrates three scenarios: (a) constant residue return; (b) an abrupt decrease of 30 % in residual return at the 51^{st} 384 year; and (c) an abrupt increase of 30 % in residue return at the 51st year. It is 385 evident from Fig. 4(b) that the sudden 30 % decrease in residue return is accompanied 386 by a sharp decrease in both α and $\alpha + \beta$ taking them from positive to negative values, 387 associated with transformation from a CO_2 sink to a source. Although both α and α 388 + β slowly increase afterwards, the watershed remains a source by the end of the 389 simulation at 100 years. By continuing the simulation beyond 100 years, it was 390

391	found that the region alters to a Transition Watershed in the 110 th year, and later
392	returns to a Sink Watershed in the 175 th year. Fig. 4(c) shows that the sudden 30 %
393	increase in residue return leads to an equally abrupt increase in both α and $\alpha+\beta$. In
394	this case, α , the capability of the watershed to sequester CO ₂ , increases by a factor of
395	5.4. Although both α and $\alpha + \beta$ slowly decline with time, they appear to saturate. It
396	appears that the basic CO_2 sequestration still remains 2.4 times as much as the level at
397	the 50 th year immediately before the abrupt increase in residue return. In summary, a
398	decrease in the residue return leads to a sudden transformation towards a Source
399	Watershed, whereas a sudden increase in the ratio of residue return is beneficial for
400	CO ₂ sequestration.

401

402 **5.** Conclusions

403

There is controversy in the literature as to whether a small watershed under 404 erosion represents a CO₂ sink or source. To help resolve this controversy, the 405 present paper has developed a discrimination model to investigate the directional and 406 intensity characteristics of CO₂ flux. The model can be used to categorize small 407 watersheds into the Sink Watersheds, Source Watersheds and Transitional Watersheds, 408 noting that a small watershed can be either a CO₂ sink or source. To evaluate the 409 model, input data are required on the ratios of the vertical and lateral carbon fluxes at 410 both the eroding site and the depositional site, and the Sediment Delivery Ratio of the 411 region. By means of parameter and scenario studies, it is demonstrated that the type 412

413	of a watershed is influenced by both natural and anthropogenic factors, with the latter
414	being most important. This raises the interesting possibility of effective CO_2 flux
415	control through changing human activities in a given small watershed. Sink
416	Watersheds are less likely to result in conditions of low erosion intensity, short
417	cultivation period, low depositional coefficient, slow carbon pool turnover rate, and
418	large depth of cultivation. An abrupt decrease in the residue return may lead to a
419	sudden transformation towards a Source Watershed. In contrast, an abrupt increase
420	in the ratio of residue return is beneficial for CO_2 sequestration. It is hoped that the
421	present paper will contribute to our understanding of CO ₂ flux control.
422	
423	References
424	
425	Alewell, C., Schaub, M., Conen, F., 2009. A method to detect soil carbon degradation
426	during soil erosion. Biogeosciences 6, 2541–2547.
427	Amiotte Suchet, P., Probst, J.L., 1995. A global model for present-day
428	atmospheric/soil CO2 consumption by chemical erosion of continental rocks
429	(GEM- CO ₂). Tellus 47B, 273-280. doi: 10.1034/j.1600-0889.47.issue1.23.x.
430	Aufdenkampe, A.K., Mayorga, E., Raymond, P.A., Melack, J.M., Doney, S.C., Alin,
431	S.R., Aalto, R.E., Yoo, K., 2011. Riverine coupling of biogeochemical cycles
432	between land, oceans, and atmosphere. Frontiers in Ecology and the Environment,
433	9, SI, 53-60. doi: 10.1890/100014.

434	Balino, B.M., Fasham, M.J.R., Bowles, M.C., 2001. Ocean biogeochemistry and
435	global change: JGOFS Research Highlights 1988~2000. In: IGBP Science No 2.,
436	1–32.

- Berhe, A.A., Harte, J., Harden, J.W., Torn, M.S., 2007. The significance of the
 erosion-induced terrestrial carbon sink. Bioscience 57, 337-346. doi:
 10.1641/B570408.
- Berner, R.A., Lasaga, A.C., Garrels, R.M., 1983. The carbonate–silicate geochemical
 cycle and its effect on atmospheric carbon dioxide over the past 100 millions
 years. American Journal of Science 283, 641–683. doi: 10.2475/ajs.283.7.641.
- Billings, S.A., Buddemeier, R.W., Richter, D.D., Van Oost, K., Bohling, G., 2010. A
 simple method for estimating the influence of eroding soil profiles on
 atmospheric CO₂. Global Biogeochemical Cycles 24, GB2001. doi:
 10.1029/2009GB003560.
- Boix-Fayos, C., de Vente, J., Albaladejo, J., Martinez-Mena, M., 2009. Soil carbon
 erosion and stock as affected by land use changes at the catchment scale in
 Mediterranean ecosystems. Agriculture Ecosystems and Environment 133, 75–85.
 doi: 10.1016/j.agee.2009.05.013.
- Cheng, S.L., Fang, H.J., Zhu, T.H., Zheng, J.J., Yang, X.M., Zhang, X.P., Yu, G.R.,
 2010. Effects of soil erosion and deposition on soil organic carbon dynamics at a
 sloping field in Black Soil region, Northeast China. Soil Science and Plant
 Nutrition 56, 521-529. doi: 10.1111/j.1747-0765.2010.00492.x.

455	Ciais, P., Wattenbach, M., Vuichard, N., Smith, P., Piao, S.L., Don, A., Luyssaert, S.,
456	Janssens, I.A., Bondeau, A., Dechow, R., Leip, A., Smith, P.C., Beer, C., van der
457	Werf, G.R., Gervois, S., Van Oost, K., Tomelleri, E., Freibauer, A., Schulze, E.D.,
458	2010. The European carbon balance. Part 2: croplands. Global Change Biology 16,
459	1409-1428. doi: 10.1111/j.1365-2486.2009.02055.x
460	Cole, J.J., Prairie, Y.T., Caraco, N.F., McDowell, W.H., Tranvik, L.J., Striegl, R.G.,
461	Duarte, C.M., Kortelainen, P., Downing, J.A., Middelburg, J.J., Melack, J., 2007.
462	Plumbing the global carbon cycle: Integrating inland waters into the terrestrial
463	carbon budget. Ecosystems 10, 171-184. doi: 10.1007/s10021-006-9013-8.
464	Dymond, J.R., 2010. Soil erosion in New Zealand is a net sink of CO ₂ . Earth Surface
465	Processes and Landforms 35, 1763-1772. doi: 10.1002/esp.2014.
466	Fontaine, S., Barot, S., Barre, P., Bdioui, N., Mary, B., Rumpel, C., 2007. Stability of
467	organic carbon in deep soil layers controlled by fresh carbon supply. Nature 450,
468	277-280. doi:10.1038/nature06275.
469	Harden, J.W., Berhe, A.A., Torn, M., Harte, J., Liu, S., Stallard, R.F., 2008. Soil
470	erosion: Data say C sink. Science 320, 178-179. doi:
471	10.1126/science.320.5873.178.
472	Jacinthe, P.A., Lal, R., 2001. A mass balance approach to assess carbon dioxide
473	evolution during erosional events. Land Degradation Development 12, 329-339.
474	doi: 10.1002/ldr.454.

Jacinthe, P.A., Lal, R., Kimble, J.M., 2002. Carbon dioxide evolution in runoff from

476	simulated rainfall on long-term no-till and plowed soils in southwestern Ohio.
477	Soil and Tillage Research 66, 23-33. doi: 10.1016/S0167-1987(02)00010-7.
478	Lal, R., 1995. Global soil erosion by water and carbon dynamics. In: Lal, R., Kimble,
479	J., Levine, E., Stewart, B.A. (Eds.), Soils and Global Change. CRC/Lewis
480	Publishers, Boca Raton, Florida, pp. 131–142.
481	Lal, R., 2003. Soil erosion and the global carbon budget. Environment International
482	29, 437–450. doi: 10.1016/S0160-4120(02)00192-7.
483	Lal, R., 2010. Managing Soils and Ecosystems for Mitigating Anthropogenic Carbon
484	Emissions and Advancing Global Food Security. Bioscience 60, 708-721. doi:
485	10.1525/bio.2010.60.9.8.
486	Lal, R., Pimentel, D., 2008. Soil Erosion: A Carbon Sink or Source? Science 319,
487	1040-1042. doi: 10.1126/science.319.5866.1040.
488	Lal, R., Griffin, M., Apt, J., Lave, L., Morgan, M.G., 2004a. Managing soil carbon.
489	Science 304, 393. doi: 10.1126/science.1093079.
490	Lal, R., Griffin, M., Apt, J., Lave, L., Morgan, G., 2004b. Response to comments on
491	"Managing soil carbon". Science 305, 1567d. doi: 10.1126/science.1101271.
492	Li, C.S., Frolking, S., Harriss, R., 1994. Modeling carbon biogeochemistry in
493	agricultural soils. Global Biogeochemical Cycles 8, 237-254. doi:
494	10.1029/94GB00767.
495	Liu, S., Bliss, N., Sundquist, E., Huntington, T.G., 2003. Modeling carbon dynamics

496	in vegetation and soil under the impact of soil erosion and deposition. Global
497	Biogeochemical Cycles 17, 1074-1097. doi: 10.1029/2002GB002010.
498	Meybeck, M., 1982. Carbon, nitrogen, and phosphorus transport by world rivers.
499	America Journal of Science 282, 401-450. doi: 10.2475/ajs.282.4.401.
500	Montgomery, D.R., 2007. Soil erosion and agricultural sustainability. Proceedings of
501	the National Academy of Sciences of the United States of America 104,
502	13268–13272. doi:10.1073/pnas.0611508104.
503	Polyakov, V.O., Lal, R., 2008. Soil organic matter and CO ₂ emission as affected by
504	water erosion on field runoff plots. Goederma 143, 216-222. doi:
505	10.1016/j.geoderma.2007.11.005.
506	Potter, C.S., Randerson, J.T., Field, C.B., Matson, P.A., Vitousek, P.M., Mooney, H.A.,
507	Klooster, S.A., 1993. Terrestrial ecosystem production: A process model based on
508	global satellite and surface data. Global Biogeochemical Cycles 7, 811-841. doi:
509	10.1029/93GB02725.
510	Quinton, J.N., Govers, G., Van Oost, K., Dardgett, R.D., 2010. The impact of
511	agricultural soil erosion on biogeochemical cycling. Nature Geoscience 3,
512	311-314. doi:10.1038/ngeo838.
513	Renwick, W.H., Smith, S.V., Sleezer, R.O., Buddemeier, R.W., 2004. Comment on
514	"Managing Soil Carbon" (II). Science 305, 1567c.
515	Schlesinger, W.H., 1991. Biochemistry: An analysis on Global Change. Academic

Press, San Diego.

517	Smith, S.V., Renwick, W.H., Buddenmeier, R.W., Crossland, C.J., 2001. Budgets of
518	soil erosion and deposition for sediments and sedimentary organic carbon across
519	the conterminous United States. Global Biogeochemical Cycles 15, 697–707. doi:
520	10.1029/2000GB001341.
521	Stallard, R.F., 1998. Terrestrial sedimentation and the carbon cycle: coupling
522	weathering and erosion to carbon burial. Global Biogeochemical Cycles 12,
523	231–257. doi: 10.1029/98GB00741.
524	Van Hemelryck, H., Fiener, P., Van Oost, K., Govers, G., Merckx, R., 2010. The effect
525	of soil redistribution on soil organic carbon: an experimental study.
526	Biogeosciences 7, 3971-3986. doi: 10.5194/bg-7-3971-2010.
527	Van Hemelryck, H., Govers, G., Van Oost, K., Merckx, R., 2011. Evaluating the
528	impact of soil redistribution on the in situ mineralization of soil organic carbon.
529	Earth Surface Processes and Landforms. 36, 427-438. doi: 10.1002/esp.2055.
530	Van Oost, K., Quine, T.A., Govers, G., De Gryze, S., Six, J., Harden, J.W., Ritchie,
531	J.C., McCarty, G.W., Heckrath, G., Kosmas, C., Giraldez, J.V., Marques da Silva,
532	J.R., Merckx, R., 2007. The impact of agricultural soil erosion on the global
533	carbon cycle. Science 318, 626-629. doi: 10.1126/science.1145724.
534	

	LC	LCF^{b} (g m ⁻² yr ⁻¹)		VCF^{c} (g m ⁻² yr ⁻¹)		
No	(g m ⁻²					β^{g}
	E^{d}	D ^e	$E^{ m d}$	D ^e	-	
1	13.2	9.6	2.5	0	0.19	0.0
2	12.8	6.8	5.7	1.4	0.45	0.2
3	16.6	14.7	5.2	2.3	0.31	0.1
4	10.6	6.4	3.2	-1.1	0.3	-0.1
5	10.1	8.5	2.4	-0.8	0.24	-0.0
6	21	14.3	5.2	-0.7	0.25	-0.0
7	6.2	3.4	1.6	-0.8	0.26	-0.2
8	3.2	3	0.7	0.1	0.21	0.0

536	Discriminant Parameters for Typical Sink Watersheds ^a .	
-----	--	--

537	a	According to Van Oost et al., 2007
538	b	Lateral Carbon Flux
539	с	Vertical Carbon Flux

540 ^d Erosion

541 ^e Deposition

- $f \quad \alpha = VCF_E / LCF_E$
- $^{g} \beta = VCF_D / LCF_D$

		FOC ^b		CF ^e		Ct ⁱ	- İ	ok
	No	(y)	(yr^{-1})		² yr ⁻¹)	$(g m^{-2})$	α ³	β
		h^{c}	k^{d}	$Cr^{\rm f}$	$E_C{}^g$			
	1	0.15	0.016	698	42	6550	-0.002	-
	2	0.18	0.02	230	56	2400	-0.118	-
	3	0.2	0.03	358	77	3720	-0.519	-
	4	0.2	0.03	238	40	2860	-0.955	-
	5	0.2	0.03	67	42	2090	-1.174	-
	6	0.2	0.03	201	54	1860	-0.289	-
547	^a According to J	acinthe a	nd Lal, 20	01				
548	^b First Order Co	efficient						
549	^c First order coe	fficient of	f humifica	tion				
550	^d First order coe	fficient of	f oxidatior	1				
551	^e Carbon Flux							
552	^f The input inter	sity of cr	op residue	S				
553	^g The lateral flux	x of erode	ed carbon					
554	^h The local carbo	on invent	ory					
555	ⁱ $\alpha = (Cr \times h - C)$	Ct imes k) / E	Ċ					
556	^j The depositional part of the watershed is not included in Jacinthe and Lal's study.							
557	However, the type	e of CO ₂	flux in the	e watersh	ned is not	affected, sinc	$\alpha < 0$ (see	e Fig.
558	1).							

546 Discriminant Parameters for Typical Source Watersheds ^a.

501	1 414			<i>a</i>		11041101						
	No ^a	I_B^{b}	D_z^{c}	D_{cul}^{d}	T ^e	$C_{\it ref}^{\rm f}$	v_E^{g}	v_D^{h}	C_0^{i}	C_{cul}^{j}	k_O^k	k_E^{-1}
	4	75	0.5	0.3	42	3617	3.15×10 ⁻³	1.91×10 ⁻³	18139	2957	0.0254	0.0105
	5	75	0.5	0.22	46	3540	2.27×10 ⁻³	1.91×10 ⁻³	17476	2429	0.0310	0.0103
	7	75	0.5	0.2	46	4633	1.22×10 ⁻³	0.668×10 ⁻³	21461	2876	0.0262	0.00611
562	^a (Drigin	al ser	ial nun	nber i	in Van (Dost et al's [2007] work.				
563	^b F	Rate o	of carb	on inp	ut fro	om crop	residues (g	$m^{-2} yr^{-1}$)				
564	^c S	Sampl	ed de	pth (m	.)							
565	^d Cultivation depth (m)											
566	e C	Cultiv	ation	period	(yr)							
567	^f Carbon inventory of the sampled layer (g m ⁻²)											
568	^g E	Erosio	on rate	e (m yr	¹), de	erived f	rom ¹³⁷ Cs in	ventory at the	e erosion	sites.		
569	^h I	Depos	itiona	l rate (m yr	¹), deri	ved from ¹³⁷	Cs inventory	at the de	positio	nal sites.	
570	ⁱ C	Carbor	n conc	centrati	on at	depth	0 m (g m ⁻³),	$C_0 = C_{ref} / \int_0^{D_z}$	Cr_z^{dz} . Se	ee the d	lefinition	of
571	Cr _z	in Fig	g. 2.									
572	^j Carbon inventory of the cultivation layer (g m ⁻²), $C_{cul} = C_0 \cdot \int_0^{D_p} Cr_z dz$											
573	^k F	First o	order c	arbon	losse	s throug	gh oxidation	$(yr^{-1}), k_0 = I_0$	$_{B}$ / C_{cul}			
574	¹ F	ʻirst o	order	carbon	loss	es thro	ugh erosior	$(yr^{-1}), k_E =$	v_E / D	cul. Dcul	(m) is t	he
575	culti	vatio	n dep	th. The	culti	vation	layer would	be completel	y mixed	after pl	ough.	
576												

Parameters used in the verification of slow carbon model. 561

	$k_O (\mathrm{yr}^{-1})$		$v_E (\mathrm{m \ yr}^{-1})$	k _R	D_{cul} (m)	T(yr)			
		1/30~1/120 ^a	0.0001~0.01 ^b	0.35~1.05 ^c	0.1~0.3 ^d	0~100 ^e			
579	a	From Potter et al., 1	993						
580	b	Form Billings et al.	, 2010 and Montgomer	ry, 2007					
581	с	European Average	European Average varied over \pm 50 %						
582	d	data from experienced agricultural managers							
583	e	it is assumed that th	e carbon pool become	s steady in 100 yes	ars.				
EQN									

Range of each factor used in scenario analysis. 578

Doromotor	Level					
Farameter	Low	Medium	High			
$k_O(\mathrm{yr}^{-1})$	0.01	0.02	0.04			
v_E (m yr ⁻¹)	0.0001	0.001	0.01			
<i>k</i> _{<i>R</i>} (–)	0.35	0.7	1.05			
D_{cul} (m)	0.1	0.2	0.3			
<i>T</i> (yr)	25	50	100			

586 Parameter values selected for scenario analysis.

v_E	Т	k _R	k _O	D_{cul}	Type of watershed			
L ^a	$\circ^{\mathbf{e}}$	0	0	0	Transition			
H^{b}	0	0	0	0	Sink			
M ^c	М	0	0	0	Sink			
_d	Н	0	0	0	Sink			
_	L	Н	0	0	Sink			
_	_	L	0	0	Transition			
_	_	М	L	0	Transition			
_	_	_	Μ	0	Transition			
_	_	_	Н	L	Sink			
_	_	_	_	М	Sink			
_	_	_	_	Н	Transition			
^a Low	Level							
^b Med	ium Leve	el						
^c High	Level							
^d Ditto	mark							
 Ditto mark Indicating the three levels of value lead to the same watershed ture. 								

Types of watersheds for each of the 243 scenarios.

597	I

Figure Captions

598	
599	Fig. 1. Watershed classification based on CO ₂ flux.
600	
601	Fig. 2. SOC profiles employed in the verification of slow carbon pool model, where
602	(a), (b), and (c) are the SOC profiles of the No. 4, 5, and 7 watersheds considered by
603	Van Oost et al. (2007); z is the soil depth (m), Cr_z is the ratio of carbon concentration
604	at z (m) C_z (g m ⁻³) to the carbon concentration in the top layer C_0 (g m ⁻³).
605	
606	Fig. 3. Comparison between the simulated and averaged α and β
607	
608	Fig. 4. Impact of different residue return scenarios on the CO_2 flux characteristics of a
609	watershed: (a) steady residue return; (b) sudden decrease in residue return in the 51 st
610	year; and (c) sudden increase in residue return in the 51 st year.

