164 research outputs found

    Spin-Cherenkov effect in a magnetic nanostrip with interfacial Dzyaloshinskii-Moriya interaction

    Get PDF
    Spin-Cherenkov effect enables strong excitations of spin waves (SWs) with nonlinear wave dispersions. The Dzyaloshinskii-Moriya interaction (DMI) results in anisotropy and nonreciprocity of SWs propagation. In this work, we study the effect of the interfacial DMI on SW Cherenkov excitations in permalloy thin-film strips within the framework of micromagnetism. By performing micromagnetic simulations, it is shown that coherent SWs are excited when the velocity of a moving magnetic source exceeds the propagation velocity of the SWs. Moreover, the threshold velocity of the moving magnetic source with finite DMI can be reduced compared to the case of zero DMI. It thereby provides a promising route towards efficient SW generation and propagation, with potential applications in spintronic and magnonic devices.Comment: 6 pages, 5 figures. To be published in Scientific Report

    Event- and time-triggered dynamic task assignments for multiple vehicles:Special Issue on Multi-Robot and Multi-Agent Systems

    Get PDF
    We study the dynamic task assignment problem in which multiple dispersed vehicles are employed to visit a set of targets. Some targets’ locations are initially known and the others are dynamically randomly generated during a finite time horizon. The objective is to visit all the target locations while trying to minimize the vehicles’ total travel time. Based on existing algorithms used to deal with static multi-vehicle task assignment, two types of dynamic task assignments, namely event-triggered and time-triggered, are studied to investigate what the appropriate time instants should be to change in real time the assignment of the target locations in response to the newly generated target locations. Furthermore, for both the event- and time-triggered assignments, we propose several algorithms to investigate how to distribute the newly generated target locations to the vehicles. Extensive numerical simulations are carried out which show better performance of the event-triggered task assignment algorithms over the time-triggered algorithms under different arrival rates of the newly generated target locations

    Distributed Model Predictive Control and Optimization for Linear Systems With Global Constraints and Time-Varying Communication

    Get PDF
    In the article, we study the distributed model predictive control (DMPC) problem for a network of linear discrete-time systems, where the system dynamics are decoupled, the system constraints are coupled, and the communication networks are described by time-varying directed graphs. A novel distributed optimization algorithm called the push-sum dual gradient (PSDG) algorithm is proposed to solve the dual problem of the DMPC optimization problem in a fully distributed way. We prove that the sequences of the primal, and dual variables converge to their optimal values. Furthermore, to solve the implementation issues, stopping criteria are designed to allow early termination of the PSDG Algorithm, and the gossip-based push-sum algorithm is proposed to check the stopping criteria in a distributed manner. It is shown that the optimization problem is iteratively feasible, and the closed-loop system is exponentially stable. Finally, the effectiveness of the proposed DMPC approach is verified via an example

    Adaptive neural network control of underactuated surface vessels with guaranteed transient performance: Theory and experimental results

    Get PDF
    In this paper, an adaptive trajectory trackingcontrol algorithm for underactuated unmanned surfacevessels (USVs) with guaranteed transient performance isproposed. To meet the realistic dynamical model of USVs,we consider that the mass and damping matrices are notdiagonal and the input saturation problem. Neural Networks(NNs) are employed to approximate the unknown externaldisturbances and uncertain hydrodynamics of USVs. Moreover,both full state feedback control and output feedbackcontrol are presented, and the unmeasurable velocities ofthe output feedback controller are estimated via a highgainobserver. Unlike the conventional control methods,we employ the error transformation function to guaranteethe transient tracking performance. Both simulation andexperimental results are carried out to validate the superiorperformance via comparing with traditional potential integral(PI) control approaches

    Distributed multi-vehicle task assignment in a time-invariant drift field with obstacles

    Get PDF
    This study investigates the task assignment problem where a fleet of dispersed vehicles needs to visit multiple target locations in a time-invariant drift field with obstacles while trying to minimise the vehicles' total travel time. The vehicles have different capabilities, and each kind of vehicles can visit a certain type of the target locations; each target location might require to be visited more than once by different kinds of vehicles. The task assignment problem has been proven to be NP-hard. A path planning algorithm is first designed to minimise the time for a vehicle to travel between two given locations through the drift field while avoiding any obstacle. The path planning algorithm provides the travel cost matrix for the target assignment, and generates routes once the target locations are assigned to the vehicles. Then, a distributed algorithm is proposed to assign the target locations to the vehicles using only local communication. The algorithm guarantees that all the visiting demands of every target will be satisfied within a total travel time that is at worst twice of the optimal when the travel cost matrix is symmetric. Numerical simulations show that the algorithm can lead to solutions close to the optimal
    • …
    corecore