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Abstract: This study investigates the task assignment problem where a fleet of dispersed vehicles needs to visit multiple target
locations in a time-invariant drift field with obstacles while trying to minimise the vehicles' total travel time. The vehicles have
different capabilities, and each kind of vehicles can visit a certain type of the target locations; each target location might require
to be visited more than once by different kinds of vehicles. The task assignment problem has been proven to be NP-hard. A
path planning algorithm is first designed to minimise the time for a vehicle to travel between two given locations through the drift
field while avoiding any obstacle. The path planning algorithm provides the travel cost matrix for the target assignment, and
generates routes once the target locations are assigned to the vehicles. Then, a distributed algorithm is proposed to assign the
target locations to the vehicles using only local communication. The algorithm guarantees that all the visiting demands of every
target will be satisfied within a total travel time that is at worst twice of the optimal when the travel cost matrix is symmetric.
Numerical simulations show that the algorithm can lead to solutions close to the optimal.

1 Introduction
Multi-vehicle systems have been increasingly employed to perform
complex and dangerous missions in logistics, terrain mapping, and
environmental monitoring, where coordination of the vehicles is
generally necessary to improve the team performance [1]. The
group mission for a multi-vehicle system is usually divided into
several subtasks such that specialised individual vehicles can deal
with each subtask concurrently [2]. A typical multi-vehicle task
assignment scenario is the deployment of a fleet of vehicles to visit
a group of target locations while minimising some objective, such
as the vehicles' maximum travel time [3] and total travel distance
[4]. For large-scale multi-robot task allocation, Liu and Shell [5]
designed centralised and decentralised algorithms through
coarsening and partitioning the utility/cost matrix. Gossip
algorithms were proposed in [6] to minimise the vehicles'
maximum execution time in heterogeneous multi-vehicle routing
problems. However, most of these research works mainly focus on
how to effectively and efficiently assign tasks to the vehicles under
the assumption that the vehicles can travel freely between two
arbitrary given locations where no external disturbances exist.

When winds/currents or obstacles exist in the operation
environment, the multi-vehicle task assignment problem consists of
two sub-problems, namely how to optimally navigate a vehicle
through two given locations and how to assign subtasks as
sequences of target locations to individual vehicles [7]. There are
some research works investigating the path planning for the
employed vehicles to avoid obstacles [8–11]. In [8], distance
functions were studied for robot path planning in the presence of
obstacles where the main principle is to express obstacle avoidance
in terms of distances between the obstacles and the part of the
robot that may potentially crash into the obstacles. The path
planning of multiple robots with kinodynamic constraints along
specified paths was addressed in [9] by first solving the two-point
boundary value problems on the minimum and maximum possible
traversal times that satisfy the kinematics and dynamics
constraints. Later on, a steering potential function was designed in
which the robots' headings to the goal and obstacles, and the
distance to the goal are used to compute a potential field to

navigate the robots [10]. The angular acceleration of a robot is
controlled by the potential field to steer the robot towards its goal
and away from obstacles. The time-optimal path planning for a
Dubins car operating in its workspace while avoiding collision with
obstacles was investigated in [11]. Some research works studied
the path planning for the employed vehicles in a drift filed [12–14].
Considering the ocean currents and obstacles, Han et al. [12]
planned the path for an autonomous underwater vehicle (AUV) to
optimally travel between two prescribed locations by simply
following the straight line connecting the two locations. In a
similar manner, the velocity synthesis approach was used by Zhu et
al. [13] to enable multiple AUVs to reach several target locations
along the shortest paths in a time-varying (in a discrete time scale)
3D underwater environment. The path planning methods
minimising a vehicle's travel distance between two given locations
in [12, 13] do not necessarily lead to the minimal time for the
vehicle to travel between the locations. Later on, Eichhorn [14]
used grid-modelling based graph methods for vehicle path planning
in a time-varying environment. However, little attention has been
paid to the path planning for vehicles in a drift field with obstacles,
not even to mention coordinating multi-vehicles to compete for
some tasks in a drift field with obstacles.

In our previous work [15], the sensor delivery task assignment
for multiple AUVs has been performed in temporally piece-wise
constant ocean currents aiming at optimising the vehicles' total
travel time. In addition, for vehicles operating in a time-varying
drift field, a co-evolutionary multi-population genetic algorithm
(GA) has been designed in [16] for multiple vehicles to deliver
products to a set of target locations. In this paper, we investigate
the task assignment problem for which a set of target locations in a
time-invariant drift field with obstacles needs to be visited by
several dispersed heterogeneous vehicles while trying to minimise
the vehicles' total travel time. The vehicles are heterogeneous in the
sense that each kind of vehicles carrying one specified sensor can
visit a certain type of targets, and some target locations might
require to be visited by vehicles with different capabilities in order
to, e.g. measure ocean salinity, temperature and conductivity. To
solve the problem, we have designed a path planning method and a
distributed task assignment algorithm (DTAA). The path planning
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algorithm can generate the time-optimal path for a vehicle to travel
between two prescribed locations in a time-invariant drift field
while avoiding any obstacle, which provides the travel cost matrix
to be used later for the task assignment. Part of the results has been
presented in [17]. Our main contributions compared with [17] are
as follows. First, we prove that the task assignment problem is NP-
hard, which leads to the necessity for constructing some efficient
suboptimal task assignment algorithms. The NP-hardness property
of the problem implies that possibly unacceptable long
computation time is required to achieve the optimal solution when
the numbers of vehicles and targets grow, and the tight lower
bound on the optimal solution proposed in [17] can be used to
measure the performance of a suboptimal task assignment
algorithm. Second, the proposed DTAA is fully distributed where
every vehicle cooperates with the communication-connected local
neighbours while guaranteeing that all the visiting demands of the
targets are satisfied within the vehicles' total travel time, which,
when the travel cost matrix is symmetric, is at most twice of the
optimal one. Last, extensive numerical experiments on the DTAA
are conducted in comparison with the popular GAs and a greedy
task assignment algorithm (GTAA), which shows that the DTAA
can quickly lead to satisfying solutions close to the optimal.

The rest of this paper is organised as follows. In Section 2, the
formulation for the multi-vehicle task assignment problem is given.
Section 3 presents the path planning algorithm which generates the
travel cost matrix for the task assignment, and in Section 4 the task
assignment problem is analysed. Section 5 presents the DTAA and
Section 6 analyses the performance of the DTAA. We present the
simulation results in Section 7 and conclude the paper in Section 8.

2 Problem formulation
To formulate the problem rigorously, we first introduce some
notations from graph theory [18]. A graph G = (V, ℰ) consists of a
set of vertices V, and a set of edges ℰ. A directed graph, or a
digraph in short, is a graph where each edge in ℰ is denoted by an
ordered pair of vertices. Let (i, j), i, j ∈ V, denote an edge which
starts at vertex i and ends at vertex j. In this paper, we only
consider simple graphs, i.e. graphs that do not contain self-loops
(i, i), ∀i ∈ V. A graph G is undirected if (i, j) ∈ ℰ ⇔ ( j, i) ∈ ℰ for
each pair of i, j ∈ V. Undirected graphs can be treated as special
directed graphs by replacing each undirected edge be two directed
edges in opposite directions. A walk W in a graph is an alternative
sequence of vertices and edges, say v0, e1, v1, e2, …, en, vn, where
ei = (vi − 1, vi), 0 < i ≤ n. A path is a walk with distinct vertices. If a
walk W = v0v1…vn is such that n ≥ 3, v0 = vn, and the vertices
vi, 0 ≤ i < n, are distinct from each other, then W is said to be a
cycle. A graph is acyclic if it does not contain any cycles. A graph
is connected if there is a path from i to j for each pair of i, j ∈ V. A
graph G is a tree if it is acyclic and connected.

The definition of the arborescence of a digraph in graph theory
is given as below.
 

Definition 1 (Arborescence): An arborescence [19] is a digraph
with a single root in which, there is exactly one directed path from
the root to every other vertex.

We extend the concept of the arborescence of a digraph with a
single root to a general one with multiple roots.
 

Definition 2 (Generalised arborescence): A generalised
arborescence is a digraph with multiple roots in which, there is
exactly one directed path from one and only one of all the roots to
every non-root vertex.

Now we are ready to define the research problem.

2.1 Problem description

Consider m dispersed aerial/marine vehicles that need to visit a set
of n target locations in a planar time-invariant drift field with
obstacles while trying to minimise the vehicles' total travel time.
Each vehicle has one specified capability to visit a certain kind of
targets and several vehicles can have the same capability. Some
targets need to be visited more than once by vehicles with different

capabilities but at most once by vehicles with the same capability.
Each vehicle initially has the position information of all the targets
in a map, and it can sense the positions of the vehicles within its
limited sensing range, which for simplicity is assumed to be the
same as the communication range. It is assumed that the
communication network of the vehicles is initially connected.

2.2 Formulation as an optimisation problem

We use the vector v→c = [vcx(x, y), vcy(x, y)]T with magnitude vc to
denote the drift velocity of the field with respect to some
coordinate system fixed to the ground. Note that v→c varies with
locations. The vehicles are assumed to move with the constant
speed v relative to a static drift field [20]. We assume that the
vehicles are free of turning ratio constraints since the dimension of
the drift field is significantly larger than the vehicles' size. The
kinematics of each vehicle i are

xi˙ = vcos ψi + vcx(xi, yi), yi˙ = vsin ψi + vcy(xi, yi), (1)

where [xi, yi]T is vehicle i's position and ψi is i's navigation angle.
Let T = {1, …, n} be the labelling of the target locations, and

ℛ = {1, …, m} be the labelling of the vehicles. We use V to
denote the set of indices of all the vehicles' initial locations, namely
V = {n + 1, …, n + m}, where each vehicle has one capability
aj ∈ A with A ≤ m. Let ℛq, q ∈ {1, …, A }, be the vehicle set
that contains the indices of those vehicles with the same capability
where ℛ = ∪q = 1

A ℛq and ℛq ∩ ℛp = ∅ for ∀q ≠ p. The binary
value yjq is employed which is one if target j requires to be visited
by one vehicle from ℛq and otherwise zero. Let
C = (t(i, j))(m + n) × (m + n), i, j ∈ T ∪ V, denote the cost matrix where
t(i, j) specifies the time for a vehicle to travel from i to j in the drift
field. The time t(i, j) to be minimised is derived from a properly
designed path planning algorithm where t(i, i) = 0 for each i. Let
σi jk be the path-planning mapping that maps the indices
i ∈ T ∪ V, j ∈ T of the starting and ending locations of a vehicle
k ∈ ℛ to a binary value, which equals one if and only if it is
planned that vehicle k directly travels from location i to j and
otherwise zero. The minimisation of the vehicles' total travel time
for satisfying all the visiting demands of the target locations is to
minimise

f = ∑
i ∈ T ∪ V, j ∈ T, k ∈ ℛ

t(i, j)σi jk, (2)

subject to

∑
i ∈ T ∪ V, k ∈ ℛq

σi jk = yjq, ∀ j ∈ T, ∀ ℛq ⊆ ℛ; (3)

∑
j ∈ T, k ∈ ℛq

σi jkyjq ≤ 1, ∀ i ∈ T ∪ V, ∀ ℛq ⊆ ℛ . (4)

Constraint (3) ensures that the visiting demand of each target is
satisfied; (4) means that each target location and each vehicle's
initial location are departed at most once for each kind of vehicles
ℛq ⊆ ℛ.

After formulating the task assignment problem as a constrained
minimisation problem, we present in the following section the path
planning algorithm that is critical for solving the overall
optimisation problem.

3 Path planning algorithm
In this section, we conduct a path planning algorithm based on grid
modelling for a vehicle to efficiently travel through two prescribed
locations in a drift field while avoiding any obstacle. The operation
environment is first evenly divided into grids of small square cells
where the cells occupied by obstacles are marked as unfeasible
areas. The square cells are labelled by ascending integers from
1, 2, 3, ⋯. Potential moving directions for a vehicle located in a
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cell are shown in Fig. 1, where the angle θnet of the net velocity for
a vehicle to move to the neighbouring cell i ∈ {1, …, 8} is
(i − 1)π /4. Let the edge length of each square cell be l. Then, the
corresponding distance is l for the vehicle to move to its
neighbouring cells with odd number labels as shown in Fig. 1,
while the distance is 2l to move to those with even number labels.

The feasibility of moving into a neighbour cell depends not
only on whether obstacles occupy the cell, but also on the strength
and orientation of currents at the vehicle's current location. The
currents within each square cell are assumed to be the same, which
is natural when the operation area is discretised with high
resolution. We obtained the magnitude of the optimal net velocity
of an underwater vehicle in [15], and calculated the rate of change
of the vehicle's optimal navigation angle in a drift field in [7] under
the assumption that v > vc. Here, we generalise the analysis. Let
vnet be the magnitude of the net velocity [ẋi, ẏi]T of vehicle i with
the motion dynamics of (1), and θc be the heading of the currents
v→c. Then, in view of (1), it holds that

vnet
2 − 2vcvnetcos(θnet − θc) − (v2 − vc

2) = 0. (5)

According to the discriminant of roots of a quadratic equation, the
feasible solution vnet to (5) exists when

sin(θnet − θc) ≤ v/vc . (6)

Based on (6) and the obstacle information, one can determine
whether a vehicle can move to a certain neighbour cell. The time
for the vehicle to travel from its location to a neighbour cell is the
division of the travel distance by vnet which can be obtained by (14)
in [15]; the time is taken to be infinity if the neighbour cell is
impossible for the vehicle to visit due to obstacles or currents.

For each cell, we first use (5) and (6) and the obstacle
information to calculate the time for a vehicle to move from the

cell to each neighbour cell. Then, a weighted digraph whose
vertices contain the indices of all the cells is constructed, where the
weight for a directed edge is the time for a vehicle to travel from
the starting vertex to the ending vertex. For a given source vertex
in the graph, Dijkstra's algorithm finds the shortest path between
that node and every other node [21, pp. 196–206]. Thus, once the
weighted digraph containing the indices of all the cells is
constructed, Dijkstra's algorithm can find the path with the
minimum travel time between any two given locations in T ∪ V,
which leads to the travel cost matrix C for (2). We show the
performance of the path planning algorithm for a vehicle to travel
through two given locations in a drift filed with an obstacle in Fig.
2, where the vehicle avoids the obstacle effectively while adjusting
its path to the currents. 

 
Remark 1: The cost matrix C is in general asymmetric, namely

t(i, j) ≠ t( j, i), and satisfies t(i, k) ≤ t(i, j) + t( j, k) as Dijkstra's
algorithm finds the path with the minimum travel time between any
two locations i and k.

4 Problem analysis
4.1 Proof of NP-hardness

Consider a digraph G = (V , E, C) that consists of a set of vertices
V = T ∪ V, a set of directed edges E, and the travel cost matrix C
that contains the weight of each edge in E. We first introduce the
multiple travelling salesman problem (MTSP) which is to
determine a set of routes for m salesmen who all start from and
return to a home city/depot to visit a set of target locations. It is a
relaxation of the vehicle routing problem (VRP) without the
capacity constraint [22]. In VRP, a fleet of vehicles initially located
at one or several depots is required to optimally transport the
products to a set of dispersed customers and then returns to the
respective starting depots, and the VRP is NP-hard [23]. If the
vehicles do not need to return to the starting depots, the VRP is
called the open VRP which is also NP-hard [24]. When the number
of the vehicles is one, the MTSP is reduced to the travelling
salesman problem (TSP) and the open MTSP (OMTSP) is then an
open TSP. In graph theory, the open TSP determines a Hamiltonian
path in an undirected or directed graph that connects in sequence
each vertex exactly once, and the TSP involves determining a
Hamiltonian cycle. Determining whether such paths and cycles
exist in graphs is the Hamiltonian path problem, which is NP-
complete [25, pp. 199–200]. The requirement of returning to the
starting city does not change the computational complexity of the
problem. So the OMTSP is NP-hard as well [26].
 

Proposition 1: The task assignment problem (2) is NP-hard
 

Proof: We first prove the NP-hardness of (2) with homogeneous
vehicles by showing that: (i) the OMTSP can be reduced to an
instance of (2) with homogeneous vehicles in polynomial time and
(ii) an optimal solution to (2) with homogeneous vehicles provides
an optimal OMTSP solution.

Let G′ = (V ′, E′, C′) with V ′ = n + 1 being an input to the
OMTSP, where n is the number of dispersed target locations. To
prove (i), we give a polynomial-time transformation of G′ into an
input of G = (V , E, C) to (2) with homogeneous vehicles, shown in
Fig. 3 where {T1, T2, T3} is the target set, D is the depot, and
{V1, V2} is the vehicle set. 

Let graph G first inherit all the target vertices of G′. Then, the
vertices representing the dispersed vehicles are added in G as V1
and V2. Now for each edge (D, Ti) in E′ with the weight t′(D, Ti),
add a directed edge from each vehicle vertex V j to the target Ti as
(V j, Ti) with the weight t(V j, Ti) = t′(D, Ti). Let
t(V j, Vk) = 0, ∀V j, Vk ∈ ℛ, and the weights of other edges of G be
the same as G′. Thus, the transformation from G′ to G is complete,
which is the input to (2) with homogeneous vehicles.

To prove (ii), we show that an optimal solution to the task
assignment problem with homogeneous vehicles corresponds to an
optimal OMTSP solution. After the transformation of G′ to G, it is
straightforward to see that an optimal solution to (2) with

Fig. 1  Possible moving directions for a vehicle to travel to its neighbour
cells

 

Fig. 2  Optimal path planning for a vehicle with v = 1 to travel between
two locations in the drift field v→c = 10−2[0.3x + 0.2y, − 0.2x + 0.3y]T with
an obstacle coloured in green where the travel time resulting from the
Dijkstra algorithm is t(1, 2) = 66.5618 s
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homogeneous vehicles is also optimal to the OMTSP based on the
edge weights of the graph shown in Figs. 3a and 3b. Thus, (2) with
homogeneous vehicles is NP-hard.

When the vehicles are heterogeneous and some target locations
need to be visited more than once by vehicles with different
capabilities, the task assignment problem (2) can be divided into
A  sub-problems where subproblem q ∈ {1, …, A } contains the
target locations in Tq needed to be visited by the vehicles in ℛq
with the same capability. In view of the NP-hardness of each sub-
problem with homogeneous vehicles, the task assignment problem
is NP-hard. The proof is complete. □

We add the following remark to emphasise why the problem we
study is difficult in nature.

 
Remark 2: A target location might belong to several

subproblems when it needs to be visited more than once by vehicles
with different capabilities.

4.2 Lower bound on the optimal solution

It can be costly to solve (2) optimally due to the NP-hardness of the
problem. As a consequence, it is natural to design heuristic
algorithms to find sub-optimal solutions. Then, one issue arises on
how to evaluate the level of optimality of a sub-optimal solution as
the optimal is typically unknown. In this section, a lower bound on
the minimum total travel time for the vehicles to satisfy all the
visiting demands of the target locations while avoiding any
obstacle is constructed. As some target locations might need to be
visited more than once by vehicles with different capabilities, we
first decouple the problem by dividing all the target locations into
A  subgroups Tq, q ∈ {1, …, A }, where T = ∪q = 1

A Tq and the
targets within Tq need to be visited by the vehicles from vehicle
set ℛq.

Let Gq be a digraph whose vertices contain the indices of the
vehicles in ℛq and the target locations in Tq, ∀q ∈ A. The weight
for a directed edge is the minimum time for a vehicle to travel from
the starting vertex to the ending vertex if at least one vertex
represents a target location and otherwise zero. We extend the Prim
algorithm [27], used to find a minimum spanning tree for an
undirected graph, to obtain a min-cost generalised arborescence

(MCGA) for the digraph Gq. The procedure to achieve an MCGA
is shown in Algorithm 1 (see Fig. 4). 

Let f q
a be the sum of all the edge weights of an MCGA of Gq,

and f q
o be the minimum total travel time for the vehicles in ℛq to

visit all the target locations in Tq. We set f a = ∑q = 1
A f q

a, and
employ f o as the minimum total travel time for (2). Then, we first
present a lower bound on f o.
 

Theorem 1: The optimal total travel time has a lower bound
f a ≤ f o.
 

Proof: We first prove that the optimal total travel time for the
vehicles in ℛq to visit all the targets in Tq is lower bounded by the
sum of all the edge weights of an MCGA of Gq, i.e. f q

a ≤ f q
o. When

the number of all the vehicles in ℛq is one, the vehicle needs to
visit all the target locations in Tq which is an open TSP problem
where the vehicle does not return to its initial location. An optimal
open TSP route for the vehicle to visit all the targets is in fact an
arborescence of Gq according to Definition 1. As f q

a is the sum of
all the edge weights of a min-cost arborescence, the total travel
time for the optimal open TSP route satisfies f q

a ≤ f q
o.

When m > 1, from the definition of the generalised
arborescence in Definition 2, the optimal solution of the problem is
also a generalised arborescence of Gq. As f q

a is the sum of all the
edge weights of an MCGA, f q

a ≤ f q
o.

As ℛ = ∑q = 1
A ℛq where ℛq ∩ ℛp = ∅ for ∀q ≠ p, we get

f o = ∑q = 1
A f q

o. In view of f q
a ≤ f q

o, it holds that
∑q = 1

A f q
a ≤ ∑q = 1

A f q
o. Thus, the proof is complete. □

Having done the problem analysis, we construct a DTAA in the
next section.

5 Distributed task assignment algorithm
In this section, we present the distributed algorithm DTAA that
relies on both an auction mechanism and a marginal-cost-based
target ordering principle. We satisfy the visiting demands of the
target locations by assigning the targets in each Tq, ∀q ∈ A, to the
vehicles in ℛq through using the following distributed auction
mechanism and the target ordering principle.

5.1 Distributed auction mechanism

The first phase of the DTAA is the distributed auction mechanism
which is used to assign the targets within each Tq to the vehicles in
ℛq. The auction mechanism works under all connected topologies
of the communication network among all the vehicles. Each
vehicle j in ℛ carries an information tuple
ℐ j = { j, pj, aj, cj, β j, oj}, where j is the vehicle's unique identifier,
pj is the index of vehicle j's initial position, aj ∈ A is j's capability,
cj is a T -tuple where its rth component cjr stores the minimal
incurred time known by vehicle j for the vehicle kept in β jr to visit
target r in Tq, and oj keeps the target locations already assigned to
vehicle j which is initialised to be {pj}.

Let the target set Tq
u contain the indices of those unassigned

targets in Tq, which is initialised as Tq. During the auction
process, each vehicle j first updates its cjr by bidding for every
target r ∈ Tq

u itself and initialises the β jr as

cjr = min
k ∈ oj

t(k, r), β jr = j, (7)

where cjr is infinite if vehicle j does not have the capability to visit
r. We enable all the vehicles to bid for each target in Tq

u instead of
only using vehicles in ℛq as the vehicles in ℛq might not be
communication-connected. The motivation is that through a certain
number of information updates through communicating with those

Fig. 3  Transformation from the OMTSP on graph G′ to the task
assignment problem with homogeneous vehicles on graph G where
(a) G′ = (V′, E′, C′), (b) G = (V , E, C)

 

Fig. 4  Algorithm 1: the extended Prim algorithm for achieving an MCGA
of a directed graph
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vehicles outside of ℛq, the vehicles in ℛq know the minimum time
incurred to visit each target in Tq

u.
Then, for ∀r ∈ Tq

u, cjr and β jr are updated by vehicle j through
local communication with directly connected neighbour vehicles in
ℛN

j = {i ∈ ℛ:dis(i, j) ≤ l} as

cjr = ci⋆r, β jr = βi⋆r, (8)

where i⋆ = argmini ∈ ℛN
j cir, and dis(i, j) is the distance between

vehicles i and j, and l is the vehicles' communication range. After
at most ℛ  synchronised iterative communications, cj and β j reach
consensus for every vehicle in ℛ. Then, the first target r⋆ in Tq

u to
be assigned is

r⋆ = argmin
r ∈ Tq

u
cjr, (9)

which is assigned to vehicle β jr⋆. Then, the targets already assigned
to vehicle β jr⋆ and the unassigned target set Tq

u are updated by

oβ jr⋆ = oβ jr⋆ ∪ {r⋆}, Tq
u = Tq

u ∖ {r⋆} . (10)

The auction process continues until the unassigned target set Tq
u is

empty. The distributed auction mechanism applied to each vehicle j
for bidding the targets in Tq is shown in Algorithm 2 (see Fig. 5). 

5.2 Target locations' ordering principle

After the auction operation, all the target locations in T have been
assigned where the target locations assigned to vehicle j ∈ ℛ are
kept in oj. Putting the target locations assigned to each vehicle into
a sequence to minimise the vehicle's total travel time is in fact the
open TSP problem. Let λj, initialised as {pj}, be the route with the
ordered target locations for vehicle j, and oj

u contain the unordered
targets in oj where oj

u is initialised as oj ∖ {pj}. In this subsection,
we design the marginal-cost-based target ordering principle to

construct λj, which determines the first target r⋆ in oj
u to be inserted

in λj and its visiting sequence k⋆ for vehicle j by

(r⋆, k⋆) = argmin
1 < k ≤ λj + 1, r ∈ oj

u
{t(λj ⊕k r) − t(λj)}, (11)

where the operation λj ⊕k r inserts target r at the kth position of λj.
Target r is inserted to the end of λj if k = λj + 1, and t(λj) denotes
the total travel time for vehicle j to visit all the targets in λj. Then,
route λj and the unordered target set oj

u are updated to

λj = λj ⊕k⋆ r⋆, oj
u = oj

u ∖ {r⋆} . (12)

The target inserting process continues until the unordered target set
oj

u is empty.
Now we discuss in more detail why our proposed algorithm

DTAA works.

6 Performance analysis of the DTAA
In the above section, the task assignment problem is decoupled by
dividing all the target locations into A  subgroups: the targets
within each subgroup Tq need to be visited by the vehicles from
vehicle set ℛq, where ℛq ∩ ℛp = ∅ for ∀q, p ∈ A, q ≠ p. We now
analyse the performance of the DTAA.

6.1 Convergence performance

Removing the zero cost edges connecting each two vehicle vertices
after obtaining the MCGA of each Gq, ∀q ∈ A, we get an
arborescence for each vehicle in ℛq. We now present some
convergence property of the DTAA.
 

Theorem 2: The targets in Tq, ∀q ∈ A, assigned to each vehicle
in ℛq by the DTAA converge to the targets in the vehicle's
arborescence resulting from the MCGA of Gq after at most
Tq ∥ ℛ  synchronised communication iterations.
 

Proof: We first prove that the DTAA produces a stable
assignment after at most Tq ∥ ℛ  synchronised iterations for Gq.
There are Tq  targets to be assigned to ℛq  vehicles. The DTAA
uses the distributed auction mechanism shown in Algorithm 2 (Fig.
5) to assign the targets in Tq to the vehicles in ℛq. After at most
ℛ  iterations of synchronised communications as shown in lines
10 to 17 of Algorithm 2 (Fig. 5), all the vehicles in ℛ reach
consensus on the bid list cj keeping the minimum travel cost for the
vehicles to visit each unassigned target in Tq

u and on the β j
recording the corresponding vehicles with the minimum travel
time. Then, at line 19 of the algorithm, the target r⋆ with the
smallest travel cost among the unassigned target set Tq

u is chosen.
At line 20, we check whether j is the vehicle with the smallest
travel cost to visit r⋆ and update the targets assigned to j according
to line 21 if j wins r⋆. Afterwards, the auction process continues
with the unassigned target set Tq

u being updated as line 23 of
Algorithm 2 (Fig. 5). Thus, all the targets in Tq are assigned to the
vehicles in ℛq after at most Tq ∥ ℛ  synchronised communication
iterations.

The proof for the convergence of the targets assigned to each
vehicle guided by the DTAA to those of the targets in the vehicle's
arborescence resulting from the MCGA is as follows. From the
analysis just now, for the DTAA the target with the smallest travel
cost among the unassigned targets in the current Tq

u is assigned to
the vehicle with the smallest travel cost after at most ℛ
synchronised communications. That process is in fact the same as
the target election operation in lines 3 and 4 of Algorithm 1 (Fig.
4). The arborescence for each vehicle in ℛq is obtained by
breaking the zero-weighted edges connecting arbitrary two vehicles

Fig. 5  Algorithm 2: distributed auction mechanism for vehicle j ∈ ℛ
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in the MCGA of Gq obtained by Algorithm 1 (Fig. 4). Herein, the
statement is proved. □

6.2 Worst-case performance guarantee

Duplicating each directed edge of the arborescence for each
assigned vehicle in ℛq but with the opposite direction, we can
construct a Eulerian graph for each vehicle (this is inspired by the
multi-vehicle algorithm [28]). Let f q

da be the sum of all the edge
weights of all the arborescences for the vehicles in ℛq after
duplicating their directed edges where f da = ∑q = 1

A f q
da.

 
Lemma 1: It holds that 1 ≤ f da/ f o, and f da/ f o ≤ 2 when the

travel cost matrix is symmetric.
 

Proof: We first prove that 1 ≤ f q
da/ f q

o. To prove the statement,
similar to the multi-vehicle algorithm operating on undirected
graphs [28], we can obtain an open TSP route for each vehicle
based on the corresponding Eulerian graph. As the directed edges
satisfy the inequality in Remark 1, the total travel time of each
vehicle in ℛq is at most the sum of all the edge weights in the
duplicated arborescence for the vehicle [28]. Thus, the total travel
time of all the vehicles in ℛq is not greater than the sum of all the
edge weights of the duplicated generalised arborescences for the
vehicles in ℛq. As the total travel time of each feasible solution is
an upper bound for the optimal solution, we get f q

o ≤ f q
da. As

f da = ∑q = 1
A f q

da and f o = ∑q = 1
A f q

o, it holds that f o ≤ f da.
When the travel cost matrix of G is symmetric, Gq is

symmetric. Thus, f q
da = 2 f q

a as f q
da is the sum of all the edge

weights of the duplicated generalised arborescence. In view of
f q

a ≤ f q
o in the proof of Theorem 1, it follows that

∑q = 1
A f q

da ≤ 2∑q = 1
A f q

o. The proof is complete. □
After the targets in Tq being assigned to the vehicles in ℛq for

each q ∈ A, the marginal-cost-based target ordering principle
proposed in Section 5.2 is used to put the targets into sequence.
These two steps lead to the DTAA. Let f q

DTAA be the total travel
time for the vehicles in ℛq guided by the DTAA to visit all the
targets in Tq where the vehicles' total travel time to satisfy all the
visiting demands of the targets in T is f DTAA. We are now able to
present the worst performance guarantee of the DTAA.

 
Theorem 3: The task assignment algorithm DTAA guarantees

that f DTAA ≤ f da.
 
Proof: We first prove that f q

DTAA ≤ f q
da, ∀q ∈ A. The proof is

conducted by induction. In Theorem 2, the assignment of the
targets in each Tq resulting from the DTAA is shown to converge
to that of the generalised min-cost arborescence of Gq, ∀q ∈ A. Let
f q j

da be the sum of all the edge weights of the duplicated
arborescence for vehicle j ∈ ℛq that can visit targets in
Tq, ∀q ∈ A. Then, f q

da = ∑ j ∈ ℛq f q j
da. The first target r⋆ to be

inserted in oj for the DTAA is determined by (9). It is
straightforward to see that r⋆ is the same as the first target inserted
in the arborescence for vehicle j according to line 3 of Algorithm 1
(Fig. 4). Thus, f q j1

DTAA ≤ f q j1
da  as f q j1

DTAA = f q j1
da , where the subscripts

1 and j are associated with the total travel time for vehicle j to visit
the first target ordered in λj.

Now suppose the first oj − 1 targets inserted in oj and those
inserted in the arborescence for vehicle j are the same and
f q j oj − 1

DTAA ≤ f q j oj − 1
da , where oj contains all the targets in the end

assigned to vehicle j. As the inequality specified in Remark 1 holds
for the optimal travel times between the vertices in G and
according to (11), for the DTAA the marginal travel time incurred
by inserting the last target r of oj into λj is

δ f q j
DTAA = min

k ≤ λj + 1
{t(λj ⊕k r) − t(λj)}

= min { min
k ≤ λj − 1

(t(λj
k, r) + t(r, λj

k + 1)

−t(λj
k, λj

k + 1)), t(pj, r) + t(r, λj
1) − t(pj, λj

1),
t(λj

λj , r)}
≤ min

k ≤ λj − 1
{t(λj

k, r) + t(r, λj
k), t(r, λj

k + 1)

+t(λj
k + 1, r)},

(13)

where pj is the index of vehicle j' initial location and λj
k is the kth

target on the ordered target list λj. On the other hand, considering
the travel time cost on duplicating the edge of the min-cost
arborescence, the minimum travel time incurred by inserting the
last target r into the arborescence for vehicle j is

δ f q j
da = t(r, λj

k⋆
) + min

k ≤ λj
t(λj

k, r), (14)

where k⋆ = argmink ≤ λj t(λj
k, r). It then follows that

δ f q j
DTAA ≤ δ f q j

da.
Combining (13) and (14) and in view of f q j oj − 1

DTAA ≤ f q j oj − 1
da , we

get

f q j oj
DTAA = f q j oj − 1

DTAA + δ f q j
DTAA

≤ f q j oj − 1
da + δ f q j

da .
(15)

As f q j
da = f q j oj − 1

da + δ f q j oj
da , it holds that f q j oj

DTAA ≤ f q j oj
da  for each

vehicle j. Thus, we get ∑ j ∈ ℛq f q j
DTAA ≤ ∑ j ∈ ℛq f q j

da, which proves
f q

DTAA ≤ f q
da.

As ℛ = ∑q = 1
A ℛq where ℛq ∩ ℛp = ∅ for ∀q ≠ p, it is

straightforward to observe that f DTAA = ∑q = 1
A f q

DTAA. Thus,
f DTAA ≤ ∑q = 1

A f q
da. The proof is complete. □

 
Remark 3: Theorem 3 gives the worst case performance of the

DTAA compared with the optimal solution as f da/ f o, which
generalises the upper bound for the task assignment problem with
a symmetric cost matrix in [29]. Furthermore, based on Lemma 1
and Theorem 3, the upper bound of f da/ f o is 2 if the cost matrix is
symmetric.

Now we have presented all the theoretical results of this
chapter. In the following section, we carry out simulation studies.

7 Simulations
In this section, Monte Carlo simulations are carried out to test the
proposed algorithms compared with a GA which is a popular
heuristic algorithm for the VRP [30] and a GTAA where vehicles
always move towards the nearest target. For each pair of target
subset Tq and the corresponding vehicle subset ℛq,
q ∈ {1, …, A }, the GA encodes each target in Tq as a numbered
gene and inserts ℛq − 1 marker genes into the target genes. Then,
each chromosome represents a candidate solution to the assignment
of the targets in Tq. The GA employs the widely used tournament
selection because of its efficiency and simplicity, which preserves
gene diversity while guaranteeing all individuals might be selected
[31]. The number of chromosomes in the GA for each Tq is
empirically set as 3( Tq + ℛq ), and the crossover rate and
mutation rate for the GA are 0.9 and 0.1. The GA terminates at the
maximal iteration number 350. All the experiments have been
performed on an Intel Core i5 − 4590 CPU 3.30 GHz with 8 GB
RAM, with the algorithms compiled by Matlab under Windows 7.
The solution quality of each task assignment algorithm is
quantified by
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q = f
f a , (16)

where f is the objective value in (2) and f a is a lower bound on the
optimal solution of the problem as shown in Theorem 1. Thus, a
value of the ratio q closer to 1 means a better performance of the
solution.

The task assignment algorithms DTAA, GA, and the GTAA are
first integrated with the designed path planning algorithm to assign
10 vehicles under different heterogeneities A  with v = 1 to satisfy
the visiting demands of 50 target locations in a square drift field
with edge length 103 m and

v→c = 10−3[0.3x + 0.2y, − 0.2x + 0.3y]T .

In the field, there are three static rectangular obstacles whose
positions are {(x, y) (x, y) ∈ [150 300]*[100 120] ∪
[400 420]*[350 500] ∪ [600 750]*[600 620]}. Under each
A ∈ {1, 3, 5, 7, 10}, 50 scenarios for each set of the initial
positions of the targets and vehicles are randomly generated while
the positions are located outside the obstacles. The visiting
demands of each target and the capability of each vehicle are
randomly generated while the vehicle capabilities can satisfy all the
targets. The average q of the solutions resulting from the
algorithms under different A  are shown in Fig. 6, and the average
variance of q and the average computation time of the algorithms
are shown in Tables 1 and 2, respectively. First, the average q of
the DTAA and GTAA displayed in Fig. 6 are within 1.3 times of
the optimal under different A  while the average q of the GA
decreases and the average q of the GTAA increases when
increasing A , which shows stable performance of the DTAA.
When A  increases, the number of targets within each target subset
Tq, q ∈ {1, …, A }, and the number of vehicles within each
vehicle subset ℛq generally decrease, thus leading to a smaller
problem size for assigning the targets in each Tq to the vehicles in
ℛq. The reason that GA generally performs better when A
increases might be due to the resulting smaller problem size.
Second, the DTAA far betters than the GA when A = 1 while the
GA is competitive with the DTAA with the increase of A  while
that is totally opposite when comparing the DTAA with the GTAA.
However, Table 2 shows that the average computation time of the
GA increases with the increase of A , which far exceeds those of
the DTAA. The phenomenon indicates that the DTAA is more
scalable than the GA. The computation time increases with a larger
A  as some target locations need to be visited more than once by
vehicles with different capabilities and more visiting demands
might occur when increasing A . Thus, more computation time is
needed to find solutions when increasing A . The average
variances of the solution qualities q of the DTAA is also generally
relatively smaller than those of the GA and the GTAA under
different A  for n50m10 as shown in Table 1, which implies the
stable feature of the DTAA. The instance n50m10 means 10
vehicles need to satisfy the visiting demands of 50 target locations. 

We have also tested the DTAA, GTAA, and the GA on the
instances with larger problem sizes where 10 vehicles under
different A  need to satisfy the visiting demands of 70 and 90
target locations, respectively, in the same drift field. For each
instance, simulations on 50 scenarios have been performed for the
problem with each A ∈ {1, 3, 5, 7, 10}. The average q of the
solutions are shown in Figs. 7 and 8, and the variances of q and the
average computation times of the algorithms are shown in Tables 1
and 2, respectively. The average q of the DTAA under each A
shown in Figs. 7 and 8 are within 1.5 times of the optimal as those
in Fig. 6, which displays the satisfying and stable performance of
the DTAA. The changing trends of the average q of the GA and the
GTAA shown in Figs. 7 and 8 are generally the same, which
decreases with the increase of A . However, the GA and the
GTAA become worser with an increase of problem size from
n50m10 to n70m10 and n90m10, where the DTAA far betters the
GA and the GTAA under each A  as shown in Fig. 8. In addition,
Table 2 shows that the mean computation times of the DTAA on

n70m10 and n90m10 do not increase too much compared with
those on n50m10 while that is not the case for the GA, which
shows the scalability of the DTAA. Furthermore, in Table 1 the
variances of q of the algorithms decrease when A  increases,
which might be due to less cooperation among the vehicles when
increasing their heterogeneities. 

8 Conclusion
This paper has studied the task assignment problem in which
multiple dispersed heterogeneous vehicles need to satisfy the
visiting demands of a set of target locations in a time-invariant drift
field with obstacles. We have proved the NP-hardness of the task
assignment problem. A path planning method has been constructed
to enable the vehicles to travel between two prescribed locations in
a drift fields with the minimal time while avoiding any obstacle.

Fig. 6  Average performance of the algorithms for 10 vehicles under
different heterogeneities A  to satisfy the visiting demands of 50 target
locations in the drift field

 
Table 1 Average variances of the solution qualities q of the
algorithms on 50 scenarios for the task assignment problem
under different instances (I) and different heterogeneities A
where n50m10 means 10 vehicles need to satisfy the visiting
demands of 50 target locations

I A 1 3 5 7 10
n50m10 GA 0.4975 0.0210 0.0036 0.0025 0.0015

GTAA 0.0029 0.0041 0.0025 0.0026 0.0020
DTAA 0.0035 0.0030 0.0024 0.0024 0.0014

n70m10 GA 0.0515 0.1015 0.0453 0.0257 0.0018
GTAA 0.0299 0.0054 0.0044 0.0022 0.0027
DTAA 0.0026 0.0017 0.0012 0.0013 0.0009

n90m10 GA 0.0297 0.1086 0.0700 0.0570 0.0262
GTAA 0.0246 0.0045 0.0037 0.0024 0.0017
DTAA 0.0025 0.0013 0.0011 0.0009 0.0013

 

Table 2 Average corresponding computation time (s) of the
algorithms to get the solution to the task assignment problem
under different heterogeneities A  and different instances (I)
I A 1 3 5 7 10
n50m10 GA 37.04 41.12 49.66 58.27 72.74

GTAA 0.08 0.12 0.17 0.21 0.29
DTAA 0.19 0.32 0.46 0.60 0.82

n70m10 GA 65.06 81.63 105.94 128.53 156.09
GTAA 0.12 0.17 0.24 0.30 0.40
DTAA 0.29 0.48 0.71 0.93 1.25

n90m10 GA 104.55 134.19 172.45 213.34 273.92
GTAA 0.15 0.22 0.31 0.40 0.53
DTAA 0.38 1.19 2.29 3.20 4.40
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The travel cost matrix resulting from the path planning method
provides the route information for the target location assignment.
In addition, a DTAA has been proposed which enables the vehicles
to cooperate based on local information. The task assignment
algorithm guarantees that all the visiting demands of the targets are
satisfied within the vehicles' total travel time, which is at most
twice of the optimal when the travel cost matrix is symmetric. We
are also planning to test the path planning algorithm and the task
assignment algorithm using a water surface robot testbed. The path
planning algorithm can be adjusted for the vehicles' path planning
in a 3D operation environment. One challenge for the extension is
to properly model the dynamics of the currents in the presence of
obstacles.
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Fig. 7  Average performance of the algorithms for 10 vehicles under
different heterogeneities A  to satisfy the visiting demands of 70 target
locations in the drift field

 

Fig. 8  Average performance of the algorithms for 10 vehicles under
different heterogeneities A  to satisfy the visiting demands of 90 target
locations in the drift field
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