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Distributed Model Predictive Control and Optimization for Linear
Systems With Global Constraints and Time-Varying Communication
Bo Jin , Huiping Li , Member, IEEE, Weisheng Yan , and Ming Cao , Senior Member, IEEE

Abstract—In the article, we study the distributed model predic-
tive control (DMPC) problem for a network of linear discrete-time
systems, where the system dynamics are decoupled, the system
constraints are coupled, and the communication networks are de-
scribed by time-varying directed graphs. A novel distributed opti-
mization algorithm called the push-sum dual gradient (PSDG) algo-
rithm is proposed to solve the dual problem of the DMPC optimiza-
tion problem in a fully distributed way. We prove that the sequences
of the primal, and dual variables converge to their optimal values.
Furthermore, to solve the implementation issues, stopping criteria
are designed to allow early termination of the PSDG Algorithm,
and the gossip-based push-sum algorithm is proposed to check
the stopping criteria in a distributed manner. It is shown that the
optimization problem is iteratively feasible, and the closed-loop
system is exponentially stable. Finally, the effectiveness of the
proposed DMPC approach is verified via an example.

Index Terms—Distributed model predictive control (DMPC),
global constraints, gossip-based push-sum algorithm, push-sum
dual gradient (PSDG) algorithm, time-varying directed graphs.

I. INTRODUCTION

It is well known that model predictive control (MPC) can explicitly
handle constraints and provide prescribed control performance, and
major progress has been made in MPC both from theoretical research
(such as stability and feasibility analysis) and industrial applications
(such as process control). Recently, the demand on controlling large-
scale and/or geographically isolated systems promotes the development
of distributed MPC (DMPC), which requires less communication re-
sources, and is more reliable compared to centralized MPC.

For systems with coupled constraints, the main challenge lies in the
guarantee of exactly satisfying global coupled constraints in a decentral-
ized and/or distributed manner. Some existing work [1]–[3] presented
sequential DMPC methods, where the global problem is divided into
some small subproblems with each subproblem being solved once at
each time step. As an extension of [1], a parallel DMPC approach has
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been reported in [4], allowing subsystems to carry out optimizations
simultaneously. However, the global optimality of the overall system is
not necessarily guaranteed under these methods. Some other works [5],
[6] presented DMPC schemes for linear systems with both coupled
dynamics and constraints using inexact optimization and constraint
tightening. In [7], a modified optimization problem was formulated
inspired by robust MPC to provide stability despite inexact minimiza-
tion. Compared to [5] and [6], this approach is fully distributed with no
centralized operations. However, these works require communication
among all coupled subsystems, which means that global communi-
cation is necessary when systems dynamics or constraints are global
ones. In order to overcome these shortcomings, an iterative DMPC
approach based on dual decomposition has been developed in [8].
An alternating direction method of multipliers (ADMM) algorithm is
used to solve the consensus optimization problem in a fully distributed
way. The method requires that all subsystems communicate with its
neighbors, and that the communication networks are represented as a
bidirectional time-invariant graph. More recently, Wang and Ong [9]
and [8] by using a Nesterov-accelerated-gradient algorithm to increase
convergence speed, where the needed global variables for executing
the Nesterov-accelerated-gradient algorithm are obtained by using a
finite-consensus algorithm at each iteration. Moreover, the work in [10]
proposed a stochastic iterative DMPC approach to solve the dual form of
the MPC optimization problem under communication noises. However,
these results are only valid for fixed bidirectional communication
network. In this article, we study the DMPC for linear systems with
global constraints over time-varying directed communication networks.

It is worth noting that the problem over directed time-varying net-
works is significantly more challenging than the case of directed fixed
networks in the following two aspects: 1) The distributed optimization
algorithm should entail the time-varying communication links, but still
achieve the global optima in such dynamic environments. In addition,
the convergence error in terms of optimal cost value should be quantified
at each iteration step to reduce the computational requirement. 2)
The stopping criterion on terminating iteration in each step should be
checked distributively, and further ensure the recursive feasibility of
the optimization problem and the closed-loop stability when the PSDG
algorithm is terminated in advance.

To resolve the first challenge, this article proposes a novel distributed
optimization algorithm called the push-sum dual gradient (PSDG)
algorithm. The primal optimization of DMPC problem is first converted
into a dual problem with the dual variable being the global optimization
variable. We have redesigned a new algorithm based on the constraint-
free subgradient-push algorithm in [11] to solve the constrained dual
problem. Compared with the proposed PSDG algorithm, most existing
distributed optimization algorithms except [11], e.g., [12]–[17] are only
applicable to fixed directed, undirected communication networks, or
time-varying communication networks with some form of balanced-
ness, reflected in the requirement of building a sequence of doubly
stochastic matrices that are commensurate with the sequence of un-
derlying communication graphs. Finally, we prove that the sequences
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of the primal and dual variables converge to their optima under the
proposed PSDG algorithm.

To overcome the second challenge, a global stopping criterion is
first proposed in terms of the accuracy of the computed cost and
global constraint satisfaction, based on the convergence property of
the PSDG algorithm. Then, we propose the gossip-based push-sum
algorithm to enable the global stopping criterion being checked in a
fully distributed manner. Under the proposed stopping criterion, the
optimization problem is proved to be recursively feasible, and the
closed-loop system is proved to be exponentially stable.

The rest of this article is organized as follows. In Section II, the
preliminaries of DMPC and problem formulation are introduced. In
Section III, a novel distributed PSDG algorithm is designed and con-
vergence analysis is conducted. In Section IV, the distributed stopping
criterion and the overall DMPC algorithm are designed. In Section V,
the proof of the feasibility of the DMPC optimization problem and
the closed-loop stability are presented. In Section VI, a case study is
provided and the concluding remarks are summarized in Section VII.

The notations: Let m,L,M > 0 be some integers, x be a vector,
A and Q be some matrices, and N be a finite set. Then, ZM and ZM

L

stand for the sets {1, 2, . . . ,M} and {L,L+ 1, . . . ,M}, respectively.
A > (≥)0 denotes that A is positive definite (semidefinite). ‖x‖ stands
for the Euclidean norm, ||x||∞ and ||x||1 stand for the infinity norm
and 1-norm of x, respectively, and ‖x‖Q is defined as ‖x‖Q := xTQx.
[x]l denotes the lth element of x. x > (≥)0 means that [x]l > (≥)0
for each l. 1m represents an m-dimensional unit vector. |N | represents
the cardinality of N .

II. PROBLEM FORMULATION AND PRELIMINARIES

A. System Description

We consider M linear discrete-time subsystems, described by the
following state equations:

xi(t+ 1) = Aixi(t) +Biui(t), i ∈ ZM (1)

where xi(t) ∈ Rni denotes the state of subsystem i at time t, and
ui(t) ∈ Rmi denotes the input of subsystem i at time t.

Assumption 1: Suppose (Ai, Bi) is controllable and the state xi(t)
is available to subsystem i for each i ∈ ZM .

Each subsystem i is subject to the following local state constraints
and input constraints:

xi(t) ∈ X i, ui(t) ∈ U i. (2)

In addition, p global constraints exist among all the subsystems

M∑
i=1

(Ψ i
xx

i(t) + Ψ i
uu

i(t)) ≤ 1p (3)

where Ψ i
x ∈ Rp×ni and Ψ i

u ∈ Rp×ui are some given matrices.
Assumption 2: X i and U i are bounded, and closed polytopes con-

taining the origins in the respective interiors.
The communication networks among the M subsystems can be

described by a sequence of time-varying directed graphs G(t) =
(V, E(t)), where V := {1, 2, . . . ,M} is the vertex set, and E(t)
is the edge set at time t. If (i, j) ∈ E(t), subsystem i can send
message to subsystem j at time t; otherwise subsystem i cannot
send message to subsystem j at time t. Furthermore, we define the
out-neighbors and in-neighbors of node i as N i

out(t) := {j|(i, j) ∈
E(t)} ∪ {i} and N i

in(t) := {j|(j, i) ∈ E(t)} ∪ {i}, respectively. De-
fine di(t) := |N i

out(t)| as the out-degree of node i.

Assumption 3: The sequence of graphs {G(t)} is B-strongly con-
nected, i.e., there exists some integer B > 0 such that the graph with
edge set EB(t) =

⋃(t+1)B−1
i=tB E(i) is strongly connected for any t > 0.

B. Optimization Problem

In this section, we introduce the MPC optimization problem [8]–[10].
Consider the following MPC optimization problem:

Problem1 : min
{ui

p,i∈ZM }

M∑
i=1

J i(xi,ui
p) (4)

ui
p ∈ U i

p(x
i) ∀i ∈ ZM (5)

M∑
i=1

f i(xi,ui
p) ≤ b(ε). (6)

where inequality (6) is a tightened global constraint,
b(ε) := [(1 − Mε)1T

p , . . . , (1 − NMε)1T
p ]

T , f i(xi,ui
p) :=⎡

⎢⎢⎣
∑M

i=1 (Ψ
i
xx

i
p(0) + Ψ i

uu
i
p(0))

...∑M
i=1 (Ψ

i
xx

i
p(N − 1) + Ψ i

uu
i
p(N − 1)))

⎤
⎥⎥⎦ , ui

p(l) and xi
p(l) denote

the input and state predictions for time t+ l at time t. Note that the
time index t is omitted in these variables to simplify symbols when
there is no ambiguity.

The local cost function is defined as J i(xi,ui
p) :=∑N−1

l=0 (‖xi
p(l)‖2Qi + ‖ui

p(l)‖2Ri) + ‖xi
p(N)‖2

P i , xi denotes the

state of subsystem i at time t, ui
p := {ui

p(0), . . . , u
i
p(N − 1)}

represents the predicted input sequence, respectively, N denotes the
length of prediction horizon, and Qi > 0, Ri > 0, and P i > 0 are
weight matrices.

The local constraint set U i
p(x

i) in (5) is defined as

U i
p

(
xi
)
:= {ui

p ∈ RmiN

xi
p(l) ∈ Xi, ui

p(l) ∈ U i, xi
p(N) ∈ X i

t

xi
p(0) = xi, xi

p(l + 1) = Aixi
p(l) +Biui

p(l), l ∈ ZN−1
0 } (7)

whereX i
t is the maximal closed polytopes such that for every xi ∈ X i

t ,
we have xi ∈ X i,Kixi ∈ U i, Ai

kx
i ∈ X i

t . In addition, if xi ∈ X i
t for

all i ∈ ZM , the following equation holds:

M∑
i=1

(Ψ i
xx

i + Ψ i
uA

i
Kxi) ≤ (1−MNε)1p (8)

with Ai
k := Ai +BiKi, (Ki, P i) being the solution of the Alge-

braic Riccati Equation (Ai
K)TP iAi

K − P i = −(Qi + (Ki)TRiKi),
(8) being a tightened constraint, and ε > 0 being some positive number
associated with the required degree of the suboptimality of the solution
when the proposed push-sum based dual gradient algorithm is termi-
nated in advance and is chosen by the practitioner.

Remark 1: The tightening of constraints in (6) and (8) is to ensure the
feasibility in the case that the designed PSDG Algorithm is terminated
when convergence accuracy is met.

Remark 2: The proposed DMPC approach cannot be applied di-
rectly to deal with coupled dynamics and a coupled cost function. This is
because in this case, the dual problem cannot be represented as the sum
of several decoupled subproblems. One possible way is to consider the
coupled states of neighbors as inputs and add some equality constraints.
In this manner, a similar optimization problem might be obtained and
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then solved by the PSDG algorithm, but it requires extra efforts to
ensure algorithm feasibility.

Assumption 4: Suppose for the initial state x0, the Slater condition
holds, i.e., there is a (u1

p,u
2
p, . . . ,u

M
p ) ∈ U1

p × U2
p × · · · × UM

p satis-

fying:
∑M

i=1 f
i(xi,ui

p) ≤ b(ε).
Also because the recursive feasibility holds as shown in Section V,

the strong duality holds for Problem 1 at each time and problem (2) can
be handled by solving the following dual problem [18].

C. Dual Form

Using λ ∈ RNp denote the dual variable of constraint (6), the La-
grange dual problem of Problem 1 is as follows:

max
λ≥0

min
ui

p∈Uip(xi)
L({ui

p

}
i∈ZM , λ)

where

L({ui
p

}
i∈ZM , λ)

:=

M∑
i=1

J i
(
xi,ui

p

)
+ λT

(
M∑
i=1

f i
(
xi,ui

p

)− b (ε)

)
(9)

is the Lagrangian.
The abovementioned Lagrange problem can be rewritten as [8]–[10]

Problem 2 : max
λ≥0

M∑
i=1

gi (λ) (10)

where gi(λ) is defined as follows:

gi (λ) := min
ui

p∈Uip(xi)
J i
(
xi,ui

p

)
+ λT

(
f i
(
xi,ui

p

)− b (ε)

M

)
.

Lemma 1. (see [19]): gi(λ) is a concave, differentiable function,
and the gradient of gi(λ) is f i(xi,ui

po(λ))− b(ε)
M

, where ui
po(λ) :=

argminui
p∈Uip(xi) g

i(λ).

III. PSDG ALGORITHM

A. Algorithm Description

In this section, we develop a distributed optimization algorithm over
time-varying directed graphs, called PSDG algorithm, to solve Problem
2. Each subsystem i maintains vector variables zi,k, ωi,k, yi,k, ui,k+1

p ,
and λi,k for all i ∈ ZM and k ≥ 0, which are updated according to the
following laws:

ωi,k+1 =
∑

j∈N i,k
in

zj,k

dj,k
(11)

yi,k+1 =
∑

j∈N j,k
in

yj,k

dj,k
(12)

λi,k+1 =
ωi,k+1

yi,k+1
(13)

ui,k+1
p = argmin

ui
p∈Uip

J i(xi,ui
p) + λi,k+1

(
f i(xi,ui

p)−
b(ε)

M

)
(14)

zi,k+1 =

[
ωi,k+1 + αk+1M

(
f i(xi,ui,k+1

p )− b(ε)

M

)]+
(15)

where N i,k
in and di,k denote the in-neighbor set and out-degree of

subsystem i at iteration k, respectively, αk represents the step size

Algorithm 1: Push-Sum Dual Gradient Algorithm.

1: Set k = 0, zi,0 = 0, λi,0 = 0 and yi,0 = 1 for all i ∈ ZM

2: Subsystem i exchanges zi,k

dj,k
and yi,k with its neighbors for

all i ∈ ZM

3: Subsystem i calculates ωi,k+1 from (11) for all i ∈ ZM

4: Subsystem i calculates yi,k+1 from (12) for all i ∈ ZM

5: Subsystem i calculates λi,k+1 from (13) for all i ∈ ZM

6: Subsystem i calculates ui,k+1
p from (14) for all i ∈ ZM

7: Subsystem i calculates zi,k+1 from (15) for all i ∈ ZM ;
8: k ← k + 1
9: Return to Step 2

at iteration k, [x]+ : Rn → Rn denotes a projection operator, defined
as

[[x]+]i =

{
0, [x]i < 0

[x]i, [x]i ≥ 0

for i ∈ Zn withx being ann-dimensional vector. The PSDG Algorithm
is summarized in the Algorithm 1.

Remark 3: The main idea underlying the PSDG Algorithm is that the
variable λi,k for every i converges to a common point by means of the
interactions (11) and (12), while (14) and (15) steer the common point to
its optimal value. The proposed PSDG Algorithm is a generalization of
the push-sum protocol [20]–[22] in the framework of the dual gradient
method to accommodate time-varying directed graphs.

Remark 4: Note that only neighbor-to-neighbor communication is
required for each step of Algorithm 1. In steps 3 and 4 of Algorithm
1, it is required that each node j knows its out-degree dj,k at time k.
This number can be computed correctly for communication networks
without packet dropouts and/or time delays.

B. Convergence Results

Assumption 5: The step size sequence {αk} is nonincreasing and
satisfies

∑∞
k=1 αk =∞ and

∑∞
k=1(αk)

2 <∞.
In general, αk has many choices, and one common choice can be

c 1
k

with c being any positive constant. The main convergence result for
the PSDG Algorithm is shown in the following theorem.

Theorem 1: Suppose Assumptions 1–5 hold. Let ui∗
p , i ∈ ZM be

the optimal solution of Problem 1, λ∗ be an optimal dual variable of
Problem 2, {ui,k

p } and {λi,k}, i ∈ ZM be the sequences generated by
the PSDG Algorithm. Then, for any state xi, i ∈ ZM in the feasible set
of Problem 1, the sequences {ui,k

p } and {λi,k} converge to ui∗
p and λ∗

for all i ∈ ZM , respectively.
Algorithm 1 is actually a specific form of the perturbed push-sum

algorithm in [11]. Since U i
p is bounded and f i(·) is continuous, the

following lemma can be given.
Lemma 2. (see [11]): Suppose Assumptions 1–5 hold. Let {λi,k}

and {zi,k}, i ∈ ZM be the sequences generated by Algorithm 1. Then
a) limk→∞ ||λi,k+1 − 1T zi,k

M
|| = 0;

b)
∑∞

k=0 α
k+1||λi,k+1 − 1T zi,k

M
|| <∞.

C. Proof of Theorem 1

Proof: λi,k is an (Np)-dimension vector. We will prove the con-
vergence of the lth element of λi,k with l be any positive constant
satisfying: l ∈ ZM . We first consider the case when [λ∗]l > 0 while
the other case when [λ∗]l = 0 can be coped with by using the same
method.

Authorized licensed use limited to: University of Groningen. Downloaded on July 05,2021 at 11:50:40 UTC from IEEE Xplore.  Restrictions apply. 
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According to Lemma 1, −gi(λ) is a convex function and
−[f i(xi,ui,k+1

p )− b(ε)
M

] is the gradient of−gi(λ) at λi,k+1. By Defin-

ing λ̂l(ε) for any constant ε as: λ̂l(ε) := [0, . . . , 0, ε, 0, . . . , 0] ∈ RNp,
we have λi,k+1 ≥ λ̂l([λ

i,k+1]l) since [λi,k+1]j ≥ 0, ∀j ∈ ZM . Then,
the following equation holds:

−[f i(xi,ui,k+1
p )− b(ε)] = −∇gi(λi,k+1)

≥ −∇gi(λ̂l([λ
i,k+1]l)). (16)

Let ε0 be an arbitrary small constant. According to Lemma 2, given
any positive constant ε1 < ε0, there exists a finite iteration k1 such that:
|[λi,k+1]l − [z̄k]l| < ε1, ∀i ∈ ZM , ∀l ∈ ZNp.

Then, for every [z̄k]l ≥ [λ∗ + ε0] with k > k1, we have

−[f i(xi,ui,k+1
p )− b(ε)] = −∇gi(λi,k+1)

≥ −∇gi(λ̂l([λ
i,k+1]l))

≥ −∇gi(λ̂l([λ
∗]l + ε0 − ε1)). (17)

Since −gi(λ) is convex about λ, −gi(λ) is convex about [λ]l.
Also because [λ∗]l + ε0 − ε1 > [λ∗]l, −[f i(xi,ui,k+1

p )− b(ε)]l ≥
−[∇gi(λ̂l([λ

∗]l + ε0 − ε1))]l > 0 for every [z̄k]l ≥ [λ∗ + ε0] with
k > k1.

According to Assumption 3, there exists a positive constant y0, such
that: yi,k > y0 for each k ≥ 0 and every i ∈ ZM . Then, for every
[z̄k]l ≥ [λ∗ + ε0] with k > k1, ωi,k > y0([λ

∗]l + ε0 − ε1). Since U i
p

is bounded and {αk}k is a decreasing sequence according to Assump-
tion 5, there exists a finite iteration k2, such that

αk+1M |[f i(xi,ui,k+1
p )]l| < ε4 ∀k > k2 (18)

where ε4 is an arbitrary small positive constant satisfy ε4 < y0([λ
∗]l +

ε0 − ε1). Therefore, the projection operator in (15) actually does not
work for any k > k3 with k3 := max{k1, k2}.

According to (11) and the definition of the out-degree of node i, we
have:

∑M
i=1 ω

i,k+1 =
∑M

i=1 z
i,k. Furthermore, we have

z̄i,k+1 =

[
z̄i,k + αk+1

(
M∑
i=1

f i
(
xi,ui,k+1

p

)− b(ε)

)]+

where z̄i,k := 1
M

∑M
i=1 z

i,k for any k > 0.
Assume that [z̄k]l ≥ [λ∗ + ε0] for each k ≥ k3, we have

[z̄k+1]l = [z̄k]l + αk+1

[
M∑
i=1

f i(xi,ui,k+1
p )− b(ε)

]
l

≤ [z̄k]l + αk+1∇g(λ̂l[λ
∗]l + αk+1ε0 − ε1). (19)

Adding it from k3 to any k > k3, we have

[z̄k+1]l ≤ [z̄k3 ]l +

k∑
j=k3

αj+1∇g(λ̂l[λ
∗]l + ε0 − ε1). (20)

Let k approaches to ∞, we have z̄k diminishes to −∞. That is to
say, any [z̄k]l satisfying [z̄k]l ≥ [λ∗ + ε0] with k ≥ k3 will diminish
until [z̄k]l < [λ∗ + ε0]. Once [z̄k0 ]l < [λ∗ + ε0] for some k0, it will
never leave the area {x|x < [λ∗]l + ε0 + ε4} according to Equation
(18). Similarly, it can be obtained that given an arbitrary small ε5, there
exists an iteration k5 such that [z̄]l enters the area {x|x > [λ∗]l − ε5}.
Therefore, given any small neighborhood of [λ∗], there exist a finite
iteration when [z̄]l enters it and stays inside it forever.

For [λ∗]l = 0, the same conclusion can also be obtained. Therefore,
z̄k converges to λ∗. According to Lemma 2, λi,k, ∀i ∈ ZM converge
to λ∗. �

IV. ALGORITHM IMPLEMENTATION

A. Stopping Criterion

In practical implementation, one needs to terminate Algorithm 1
after certain steps, as it cannot iterate for infinite steps. In this section,
we design the stopping criteria for Algorithm 1 to facilitate practical
implementation while ensuring constraint satisfaction and optimal per-
formance. Consider the following two stopping criteria:

M∑
i=1

f i(xi,ui,k
p )− b(ε) ≤ εM1pN (21)

M∑
i=1

J i(xi,ui,k
p )−

M∑
i=1

J i(xi,ui∗
p ) ≤ σ (22)

with σ > 0 being a parameter to de designed by the user. Inequality
(21) guarantees that the solution of Algorithm 1 satisfies the global
constraint (3), and inequality (22) ensures the prescribed optimality of
the solution. In [8], it has been proved that Problem 2 is iteratively
feasible and the closed-loop system is exponentially stable when (21)
and (22) are chosen as the stopping criteria for Algorithm 1. However,
ui∗

p in (22) is not available, then we have to find a new stopping criterion
to replace (22).

Consider the following stopping criterion:

M∑
i=1

J i(xi,ui,k
p )−

M∑
i=1

gi(λi,k) + bg

M∑
i=1

||z̄k−1 − λi,k|| ≤ σ (23)

with z̄−1 is chosen as 0.
Lemma 3: Suppose Assumptions 1–5 hold. If the input ui

p satisfies
(23), it also fulfills (22).

Proof: We know that for any λ ≥ 0,
∑M

i=1 g
i(λ) is a lower bound

of
∑M

i=1 J
i(xi,ui∗

p ). Then, the following inequality holds:

M∑
i=1

gi(z̄k) ≤
M∑
i=1

J i(xi,ui∗
p ). (24)

In Section II, we obtain that the gradient of gi(λ) is
f i(xi,ui

po(λ))− b(ε)
M

. According to Assumption 2, there exists

a positive constant bg such that ||f i(xi,ui
po(λ))− b(ε)

M
|| ≤

bg, ∀ui
po(λ) ∈ U i

p, for all i ∈ ZM . Hence, we have that

|
M∑
i=1

gi(λi,k+1)−
M∑
i=1

gi(z̄k)| ≤ bg

M∑
i=1

||z̄k − λi,k+1||. (25)

Incorporating (24) with (25), the following inequality holds:

M∑
i=1

J i(xi,ui∗
p ) ≥

M∑
i=1

gi(λi,k+1)− bg

M∑
i=1

||z̄k − λi,k+1||.

�
In what follows, we show that (21) and (23) are attainable. The result

is summarized in the following lemma.
Lemma 4: There exists at least one iteration k, at which (21) and

(23) hold.
Proof: According to Theorem 1, we have that limk→∞

∑M
i=1

f i(xi,ui,k
p )− b(ε) ≤ 0 and limk→∞

∑M
i=1 J

i(xi,ui,k
p )−∑M

i=1

gi(λi,k) = 0. Incorporating the second equality with the fact
that limk→∞ ||z̄k−1 − λi,k|| = 0 for all i ∈ ZM from Lemma 2,
we have that limk→∞

∑M
i=1 J

i(xi,ui,k
p )−∑M

i=1 g
i(λi,k) +

bg
∑M

i=1 ||z̄k−1 − λi,k|| = 0. Then, there exists an iteration k, at
which (21) and (23) hold. �
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Remark 5: Note that
∑M

i=1 f
i(xi,ui,k

p ) in (21),
∑M

i=1 J
i(xi,ui,k

p ),∑M
i=1 g

i(λi,k),
∑M

i=1 ‖z̄k−1 − λi,k‖, and z̄k−1 in (23) are global vari-
ables, which are the sum of corresponding local variables. In order
to check the stopping criteria in a fully distributed way, we present a
consensus average algorithm, called gossip-based push-sum algorithm,
to calculate these global variables in a fully distributed way.

B. Gossip-Based Push-Sum Algorithm

Definition 1: Let z, ẑ, and ρ > 0 be some scalars. We call ẑ a ρ-
approximation of z if |z − ẑ| ≤ ρ.

The main idea of the gossip-based push-sum algorithm is given
as follows. Consider the network G(t) described in Section II and
a vector π = [π1, π2, . . . , πM ]T with πi being some scalars for all
i ∈ ZM , where πi is only available to subsystem i for all i ∈ ZM , and
every subsystem can only communicate with its neighbors. Given some
scalar ρ > 0, the function of the gossip-based push-sum algorithm is to
obtain a ρ-approximation of the average π̄ :=

∑M
i=1 π

i in a distributed
manner.

Before designing the gossip-based push-sum algorithm, we need to
make use of the standard push-sum algorithm [22]. The iteration steps
are given as follows:

pi,k+1 =
∑

j∈N i,k
in

pj,k

dj,k
(26)

yi,k+1 =
∑

j∈N j,k
in

yj,k

dj,k
(27)

ci,k+1 =
pi,k+1

yi,k+1
(28)

where yi,0 = 1, and pi,0 = πi for all i ∈ ZM .
To calculate theρ-approximation of the average π̄, we fix the iteration

step lower bounded by some k0 in the standard push-sum algorithm.
Choose k0 = logr

ρδ
8M ||π||∞ + 1 with δ = 1

MMB , and γ = (1−
1

MMB )
1
B . Then, we have that [11]

|ci,k − π̄| ≤ ρ (29)

for any k > k0. That is, for any k ≥ k0 and i ∈ ZM ci,k is a ρ-
approximation of π̄.

However, k0 is a global variable because π is not available to any
subsystem. In the following, we will propose a way to calculate k0 in
a distributed way.

Denote

ki
0 := logr

ρδ

8M |πi| + 1 (30)

for all i ∈ ZM . According to the definition of the∞-norm of a vector,
we have that k0 = maxi∈ZM ki

0. Hence, the stopping criterion k ≥ k0
is equal to k ≥ ki

0, ∀i ∈ ZM . Then, the key is to make each subsystem
i know the information whether k ≥ kj

0 or not, for all j ∈ ZM . We
present a global way to check it: Assign each subsystem a one-bit binary
variable Di,t at each iteration t with Di,t = 0, ∀i ∈ ZM . Di,t for each
i ∈ ZM is updated as the following law if k < ki

0 or there exists at least
one j ∈ N i,t

in satisfyingDj,t = 1,Di,t+1 = 1; otherwise,Di,t+1 = 0.
Since the communication network is B-strongly connected, Di,t for all
i ∈ ZM will reach consensus at iteration ts = BM . Di,ts = 0 means
k ≥ kj

0, ∀j ∈ ZM holds, Di,ts = 1 means k ≥ kj
0, ∀j ∈ ZM does not

hold. Then, the gossip-based push-sum algorithm can be summarized
in Algorithm 2.

Algorithm 2: Gossip-Based Push-Sum Algorithm.

1: Set ρ > 0, k = 0, yi,0 = 1, pi,0 = πi, j ∈ ZM

2: Calculate ki
0 from (30);

3: repeat
4: Subsystem i sends pi,k and yi,k to its neighbors
5: Subsystem i calculates pi,k+1 from (26)
6: Subsystem i calculates yi,k+1 from (12)
7: Subsystem i calculates ci,k+1 from (28)
8: until k ≥ ki

0 for all i ∈ ZM

9: Output ci,k̂
i

for all i ∈ ZM

10: k ← k + 1

C. Distributed Stopping Criteria

In this section, we will utilize Algorithm 2 to design fully distributed
stopping criteria to terminate the PSDG Algorithm. To simplify the
presentation, denote 1

M
[
∑M

i=1 f
i(xi,ui,k

p )− b(ε)] in (21) and
1
M
[
∑M

i=1 J
i(xi,ui,k

p ) − ∑M
i=1 g

i(λi,k) + bg
∑M

i=1 ||z̄k−1 − λi,k||]
in (23) by C̄k and Ōk, respectively. Then, (21) and (23) can be rewritten
as
∑M

i=1 C
i,k ≤ εM1pM and MŌk ≤ σ, respectively. Given any

ε1 > 0 and σ1 > 0, subsystem i can obtain an ε1-approximation of
C̄k, denoted by Ĉi,k, and a σ1-approximation of Ōk, denoted by Ôi,k

by means of Algorithm 2, respectively.
Choose the following inequalities as new stopping criteria for sub-

system i:

MĈi,k ≤ ε2M1pN (31)

MÔi,k ≤ σ2 (32)

with ε2 > 0 and σ2 > 0 being a constant, satisfying ε1 + ε2 ≤ ε and
Mσ1 + σ2 ≤ σ.

Remark 6: Denote the iteration when (31) and (32) are satisfied by k̄.
Note that (31) and (32) are just the sufficient conditions of (21) and (23),
and the resulting k̄ might be conservative, which depends on the com-
munication network. For example, if the weighted matrices are doubly
stochastic, the standard push-sum algorithm will converge faster [11],
which means the accuracy of the approximation of an average is higher
within the same number of iterations. If the communication network is
fixed, bidirectional and connected, the exact average can be obtained
within finite iteration steps by using the finite-time average consensus
algorithm [8] and there is no conservatism in this case.

Lemma 5: Assume ε1 + ε2 ≤ ε. Then, if (31) holds, (21) is fulfilled.
Assume Mσ1 + σ2 ≤ σ. Then, if (32) holds, (23) is satisfied. Choose
ε1 ≤ ε2 and Mσ1 ≤ σ2. Then, (31) and (32) are attainable for at least
one iteration.

The proof can be easily proved according to the Definition of 1 and
Theorem 1 and is omitted here. This lemma indicates that (31) and
(32) are qualified to be the stooping criteria to replace (21) and (23),
respectively.

D. DMPC Algorithm

In this section, we present the overall DMPC controller, which is
given in Algorithm 3.

Remark 7: Note that Step 8 in Algorithm 3 requires that each
subsystem knows the global information about whether (31) and (32)
are satisfied for all i ∈ ZM at some iteration. This process can be
implemented in a distributed manner by using Algorithm 2, and the
detailed procedure is omitted since it is the same as the case for checking
whether k ≥ kj

0 for all j ∈ ZM in Section IV-B.
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Algorithm 3: DMPC Algorithm.

1: Initialize the parameters σ, σ1, σ2, ε, ε1, and ε2
2: All the M subsystems obtain its state x(t)
3: Set k = 0
4: repeat
5: All the M subsystems execute (11)–(15)
6: k ← k + 1
7: All the M subsystems check the stopping criteria (31)

and (32) using Algorithm 2
8: until The stopping criteria (31) and (32) are satisfied for all

i ∈ ZM at k̄
9: Output the input ui,k̄

p , i ∈ ZM

10: Wait for the next sample time, let t← t+ 1, and return to
Step 1

V. FEASIBILITY AND STABILITY ANALYSIS

Before we prove the feasibility of the designed optimization problem
and stability of the closed-loop system, a necessary lemma is given first.

Lemma 6: Suppose ε > 0, ε1 > 0, ε2 > 0, σ > 0, σ1 > 0,
σ2 > 0, ε1 + ε2 ≤ ε, Mσ1 + σ2 ≤ σ, ε1 ≤ ε2, Mσ1 ≤ σ2. Then,
for any xi ∈ X i

t , the solution of Algorithm 1 with the stop-
ping criteria (31) and (32) is ui,k̄

p := {ui,k̄
p (0), . . . , ui,k̄

p (N − 1)}:=
{Kixi,KiAi

Kxi, . . . ,Ki(Ai
K)

N−1
xi} := Ki

Ax
i with the stopping

iteration k̄ = 0.
Proof: We know that {Ki

Ax
i}i∈ZM is the optimal solution of

the unconstrained counterpart of Problem 1. Also because for
any {xi ∈ X i}i∈ZM , {Ki

Ax
i}i∈ZM satisfies the local constraints

and the global constraints of Problem 1 according to the defini-
tion of X i

t , {Ki
Ax

i}i∈ZM is the optimal solution of Problem 1.
That is to say, for any {xi ∈ X i}i∈ZM , Problem 1 is equivalent
to its unconstrained counterpart. Since λi,0 = zi,0 = 0, ∀i ∈ ZM ,
we have:

∑M
i=1 f

i(xi,ui,0
p )− b(ε) ≤ 0 and

∑M
i=1 J

i(xi,ui,0
p )−∑M

i=1 g
i(λi,0) + bg

∑M
i=1 ||z̄−1 − λi,0|| = 0 for all i ∈ ZM . Then, the

stopping criteria (31) and (32) are satisfied at k̄ = 0. �
Theorem 2: Suppose Assumptions 1–5 hold. Choose (31) and (32) as

the stopping criteria for Algorithm 1 with ε > 0, ε1 > 0, ε2 > 0,σ > 0,
σ1 > 0, σ2 > 0, ε1 + ε2 ≤ ε, Mσ1 + σ2 ≤ σ, ε1 ≤ ε2, Mσ1 ≤ σ2.
Then, for any initial state in the feasible set, 1) Problem 2 has a feasible
solution at any time t; 2) furthermore, choose the parameter σ such
that{xi : ||xi||2

Qi ≤ σ} ⊂ int(X i
t ) for all i ∈ ZM , then the closed-loop

system under Algorithm 3 is exponentially stable.
Proof: Proof of 1): Denote the solution of Algorithm 1

at time t by: ui
p(t) = {ui

p(0|t), ui
p(1|t), . . . , ui

p(N − 1|t)}, and
the corresponding state sequence is represented by: xi

p(t) =
{xi

p(0|t), xi
p(1|t), . . . , xi

p(N |t)}, for i ∈ ZM . Since ui
p(t), i ∈ ZM

satisfies the designed stopping conditions, the following inequality
holds: ∀l ∈ ZN−1

0

M∑
i=1

Ψ i
xx

i
p(l|t) + Ψ i

uu
i
p(l|t) ≤ (1− εMl)1p. (33)

Consider the following input sequence at time t+ 1

ûi
p(t+ 1) := {ûi

p(0|t+ 1), . . . , ûi
p(N − 1|t+ 1)}

= {ui
p(1|t), . . . , ui

p(N − 1|t),Kixi
p(N |t)} (34)

and the corresponding state sequence x̂i
p(t+ 1) := {x̂i

p

(0|t+ 1), . . . , x̂i
p(N |t+ 1)}={xi

p(1|t), . . . , xi
p(N |t), (Ai+BiKi)

xi
p(N |t)}.

According to (33), we have
∑M

i=1 (Ψ i
x x̂i

p (l|t+ 1) +

Ψ i
u ûi

p (l|t+ 1)) =
∑M

i=1 (Ψ i
x xi

p(l + 1|t) + Ψ i
u ui

p (l + 1|t)) ≤
(1− εM(l+ 1))1p, ∀l ∈ ZN−2

0 . Furthermore, since xi
N |t ∈ X i

t , it fol-

lows that
∑M

i=1(Ψ
i
x x̂i

p (N − 1|t+ 1) + Ψ i
u ûi

p (N − 1|t+ 1)) =∑M
i=1 (Ψ i

x xi
p(N |t) + Ψ i

uK
i xi

p(N |t)) ≤ (1− εMN) 1p, and x̂i
p

(N |t+ 1) ∈ X i
t . Hence, ûi

p(t+ 1) is a feasible solution at time t+ 1.
Proof of 2): Define the Lyapunov function V (x(t)) :=∑M
i=1 J

i(xi(t),ui∗
p (t)), where ui∗

p (t), i ∈ ZM is the optimal
solution of Problem 1 at time t.

Since ui
p(t) satisfies the designed stopping condition (22), we have

M∑
i=1

J i(xi(t),ui
p(t))− V (x(t)) ≤ σ. (35)

According to (34), ûi
p(t+ 1) is a feasible solution of

Problem 1. Hence, we have J i(xi(t+ 1), ûi
p(t+ 1))−

J i(xi(t),ui
p(t))= −‖xi(t)‖2

Qi − ‖ui
p(t)‖2Ri , where the equal-

ity is obtained from the fact that (Ki, P i) is the solution
of the Algebraic Riccati equation (Ai

K)TP iAi
K − P i =

−(Qi + (Ki)TRiKi). Considering ûi
p(t+ 1) may be not

optimal, we have V (x(t+ 1)) ≤∑M
i=1J

i(xi(t+ 1), ûi
p(t+ 1)) =∑M

i=1(J
i(xi(t), ûi

p(t))− ‖xi(t)‖2
Qi). Utilizing (35), we have

V (x(t+ 1)) ≤ V (x(t)) + σ −∑M
i=1 ‖xi(t)‖2

Qi := V (x(t))− θ(t).

Then, the statexi(t), i ∈ ZM enter the set {xi :
∑M

i=1 ‖xi(t)‖2
Qi ≤ σ}

in a finite time. Choose σ such that {xi : ‖xi(t)‖2
Qi ≤ σ} ⊆ X i

t .

After that, the closed-loop system will become xi(t+ 1) = Ai
Kxi(t)

according to Lemma 6. Hence, the closed-loop system is asymptotically
stable. �

VI. NUMERICAL EXAMPLE

Consider an example of four linear time-invariant subsystems. The
edge sets of the communication graph is {(1, 2), (3, 4)} when the
iteration counter is odd; the edge sets of the communication graph is
{(2, 3), (4, 1)}when the iteration counter is even. Then, the communi-
cation graphs are B-strongly connected with B = 2. For subsystems 1
and 3, the state and input matrices are Ai = [1, 1; 0, 1] and Bi = [1; 1],
respectively. For subsystems 2 and 4, the state and input matrices are
Ai = [2, 1; 0, 1] and Bi = [1; 1], respectively. The initial states of sub-
system 1− 4 are [0.2; 0.18], [0.17; 0.16], [0.19; 0.18], and [0.22; 0.21].
For all the four subsystems, the local state and constraint sets are
X i = {xi : ‖xi‖∞ ≤ 1} and U i = {ui : ‖ui‖∞ ≤ 0.3}, respectively.
The global constraint is: |u1 + u2 + u3 + u4| ≤ 1. The state and input
weight matrices are chosen as Qi = I and Ri = 0.1, respectively. The
horizon length is chosen as N = 5. The sequence of the step sizes
of Algorithm 1 is chosen as 50

k
with k being the iteration counter of

Algorithm 1.
We first illustrate the effectiveness of Algorithm 1. Fig. 1 shows the

curves about the input sequence u1,k
p of subsystem 1 over iteration k.

Fig. 2 shows the curves about the dual variable λ1,k of subsystem 1 over
iteration k. From these two figures, we can see that the primal and dual
variables converge to their optimal values. From Fig. 2, we can also
observe that some components of λ1,k converge to 0, which implies
that the constraint λ1 ≥ 0 is active. Fig. 3 shows the summation of
the calculated control input sequence of all agents with length N = 5,
i.e., Sk :=

∑4
i=1 u

i,k
p . It can been seen that Sk[1] converges to −1,

which indicates that the global constraint |u1 + u2 + u3 + u4| ≤ 1
is active. Fig. 4 shows the curve about the consensus error, defined
as ek :=

∑4
i=1 ||λi,k − λ̄k||2 with λ̄k :=

∑4
i=1 λi,k, over iteration k.

This figure indicates that the local dual variables λi,k for all i ∈ Z4
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Fig. 1. Curves about the primal variable u1,k
p under Algorithm 1.

Fig. 2. Curves about the dual variable λ1,k under Algorithm 1.

Fig. 3. Curves about the global constraint Sk under Algorithm 1.

Fig. 4. Curves about the consensus error ek under Algorithm 1.

Fig. 5. State trajectory of the four subsystems over time t.

achieve consensus over iteration k. Fig. 5 illustrates the effectiveness
of the overall DMPC controller. From the figure, we can observe that
the four closed-loop systems are exponentially stable.

VII. CONCLUSION

In this article, a DMPC approach has been developed for a group of
decoupled constrained linear discrete-time subsystems with both local
and global constraints when the communication networks are directed
time-varying graphs. The primal optimization problem is transformed
into a consensus optimization problem, and the PSDG Algorithm is
proposed to solve the consensus optimization problem. Moreover,
distributed stopping criteria are designed to provide early termination
for the PSDG algorithm. We have proved that the DMPC optimization is
iteratively feasible, and the closed-loop system is exponentially stable.
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