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Abstract We study the dynamic task assignment prob-
lem in which multiple dispersed vehicles are employed
to visit a set of targets. Some targets’ locations are ini-

tially known and the others are dynamically randomly
generated during a finite time horizon. The objective
is to visit all the target locations while trying to min-

imize the vehicles’ total travel time. Based on existing
algorithms used to deal with static multi-vehicle task
assignment, two types of dynamic task assignments,

namely event-triggered and time-triggered, are stud-
ied to investigate what the appropriate time instants
should be to change in real time the assignment of

the target locations in response to the newly generat-
ed target locations. Furthermore, for both the event-
and time-triggered assignments, we propose several al-

gorithms to investigate how to distribute the newly gen-
erated target locations to the vehicles. Extensive nu-
merical simulations are carried out which show better

performance of the event-triggered task assignment al-
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gorithms over the time-triggered algorithms under dif-
ferent arrival rates of the newly generated target loca-
tions.
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1 Introduction

The multi-vehicle task assignment problem in which a

fleet of vehicles are employed to visit a set of target lo-
cations has been increasingly exploited due to its wide
applications in logistics, terrain mapping, and environ-

mental monitoring (Toth and Vigo, 2002; Gerkey and
Matarić, 2004; Dahl et al, 2009; Chen and Cheng, 2010;
Moon et al, 2013; Di Paola et al, 2015). A typical sce-

nario of the multi-vehicle task assignment problem is
the vehicle routing problem (VRP) where several ve-
hicles are employed to deliver products to a group of

dispersed customers (Laporte, 2009). For the VRP, it
is NP-hard to optimally minimize the vehicles’ total
travel distance to serve all the customers as the num-

bers of customers and vehicles grow (Lenstra and Kan,
1981). As a result, many heuristic algorithms have been
designed to sub-optimally solve the VRP (Prins, 2004;

Kuo, 2010; Escobar et al, 2014). The multi-vehicle task
assignment problem under certain setups has also been
shown to be NP-hard (Korsah et al, 2013). When the

matrix, specifying the cost for a vehicle to travel be-
tween each pair of locations, satisfies the triangular in-
equality and is symmetric, the task assignment algo-

rithm proposed in Lagoudakis et al (2004) ensures that
the total travel cost for a fleet of robots to visit a set of
target locations is within twice of the optimal. In Shi-

ma et al (2006), a genetic algorithm (GA) was designed
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for unmanned aerial vehicles to visit every target loca-

tion in which the priority for visiting each target loca-
tion and vehicles’ loading capacity are considered. Fur-
thermore, several auction-based algorithms proposed in

Choi et al (2009) guarantee that the vehicles’ total trav-
el cost to visit a set of target locations is within twice
of the optimal under the assumption that the utility

of a focus target is non-increasing as other targets are
added to a vehicle’s path before this focus target. A
heuristic distributed algorithm was designed in Zhao

et al (2016) for search and rescue task assignment of
multiple vehicles. However, most of the discussed algo-
rithms have been developed for the static multi-vehicle

task assignment problem in which the information on
all the target locations to be visited is initially known
and no new target locations dynamically appear.

Some algorithms have been designed for the dynam-
ic task assignment for multiple vehicles in which the po-
sition information of some targets or vehicles is not ini-

tially known to every vehicle (Fua and Ge, 2005; Smith
and Bullo, 2009; Zhu et al, 2013; Yu et al, 2015; Chopra
and Egerstedt, 2015). In Fua and Ge (2005), a coopera-

tive backoff adaptive scheme was designed for the task
allocation of robots under limited communication range
and potential malfunctions, where completing one task

might require the cooperation of several robots. When
two robots are communication-connected, a task reas-
signment might be triggered to improve the system’s

performance. A self-organizing map neural network was
designed by Zhu et al (2013) to dynamically assign
a set of targets to several underwater vehicles where

the targets might move with constant known veloci-
ty. The task assignment for robots under limited com-
munication range was also investigated in Smith and

Bullo (2009) in which monotone algorithms were de-
signed to minimize the time until the last target loca-
tion was occupied by a robot. Though each robot does

not know how many other robots exist in the environ-
ment in Smith and Bullo (2009), every target position
is assumed to be initially known to all the dispersed

robots and the numbers of robots and targets are e-
qual. To solve the task assignment problem, Smith and
Bullo (2009) designed an assignment strategy where

each robot first precomputes a TSP tour through all
the target locations, and then all the robots move a-
long the tour with the same direction looking for the

unoccupied target locations. Whenever two robots are
communication-connected, they update their carried lo-
cal information on which target locations have already

been occupied and negotiate the deal on the target lo-
cations to be occupied. Later on, several decentralized
algorithms were proposed to minimize the robots’ total

travel distance until every target location was occupied

by one robot subject to limited sensing and communi-

cation ranges (Yu et al, 2015). The numbers of robots
and targets are equal in both Smith and Bullo (2009)
and Yu et al (2015), and consequently a robot stop-

s moving upon reaching an unoccupied target. Chopra
and Egerstedt (2015) investigated the routing of mul-
tiple robots to serve spatially distributed requests at

specified time instants by formulating the problem as
a pure assignment problem. However, the correspond-
ing set of planar positions that require simultaneous

service at each time instant is assumed to be initially
known by every robot. As discussed above, few of the
research work investigate when the appropriate time in-

stants should be to change the assignment of the targets
as well as in what manner to reassign the targets in re-
sponse to newly dynamical generated target locations.

In our previous work Bai et al (2017a), several clust-
ering-based algorithms have been proposed for a fleet
of vehicles to efficiently visit a set of target locations in

a time-invariant drift field while trying to minimize the
vehicles’ total travel time. In addition, we have inves-
tigated the task assignment for heterogeneous vehicles

with precedence constraints (Bai et al, 2019a), and s-
tudied the task assignment for multiple heterogeneous
vehicles in a time-invariant drift field with obstacles

(Bai et al, 2019b). Furthermore, for vehicles operating
in a time-varying drift field, a co-evolutionary multi-
population GA was designed in Bai et al (2018) for

multiple vehicles to deliver products to a set of tar-
get locations. In this paper, we investigate the dynamic
task assignment for multiple vehicles to visit a set of tar-

get locations where some target locations are initially
known and the other target locations are dynamically
generated during the vehicles’ movement. The objec-

tive is to visit every target location while minimizing
the vehicles’ total travel time. Our main contributions
are as follows. Firstly, for the specified dynamic multi-

vehicle task assignment problem, we have investigated
when the appropriate time instants should be to change
the assignment of the target locations in response to the

newly generated target locations. Both event- and time-
triggered task assignments under different time horizon-
s have been investigated. Secondly, we have studied how

to dynamically reassign the targets to minimize the ve-
hicles’ total travel time under each target reassignment.
For both the event- and time-triggered dynamic task as-

signments, several algorithms are investigated on how
to assign the newly generated target locations based on
the existing assignment of the vehicles.

The rest of this paper is organized as follows. In Sec-
tion 2, the formulation of the task assignment problem

is given. Section 3 presents dynamic target assignment
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algorithms. We present the simulation results in Section

4 and conclude the paper in Section 5.

2 Problem Statement

Consider that m dispersed robots are employed to visit
a set of target locations where n target locations are

initially known while some other new target locations
are to be dynamically randomly generated. Each vehicle
will be informed about the position of each newly gen-

erated target once it appears. Each vehicle is assumed
to move continuously with the unit speed until all the
target locations assigned to the vehicle have been visit-

ed, and start to move again once being reassigned with
some new target locations. The task assignment prob-
lem is to minimize the vehicles’ total travel time to visit

all the target locations.

Let R denote the set of indices of the m vehicles,
R = {1, · · · ,m}, and Tini = {m+1, · · · ,m+n} be the
set of indices of the n target locations initially known.

Let T = Tini ∪ Tnew where the set Tnew contains the
indices of the newly generated target locations whose
position information is initially unknown, and ti, i ∈ T ,

be the time instant when target location i is generated.
So ti = 0 for all i ∈ Tini. The binary variable σij(t)
is used to represent the target-assigning mapping that

maps the indices i ∈ T and j ∈ R of the assignment
of target location i to vehicle j at time t, which equals
one if and only if it is planned that vehicle j is assigned

to visit i at time t. The binary variable yij is used to
represent whether target location i is visited by vehicle
j, and let d(j) be the total travel time of vehicle j.

Then, the problem is to minimize the vehicles’ total
travel time to visit all the target locations

f =
∑
j∈R

d(j), (1)

subject to∑
j∈R

yij = 1, ∀ i ∈ T ; (2)

ti ≤ t, if σij(t) = 1, ∀ i ∈ T , ∀ j ∈ R; (3)∑
j∈R

σij(t) ≤ 1,∀ i ∈ T ,∀ t; (4)

yij ∈ {0, 1}, ∀ i ∈ T , ∀ j ∈ R; (5)

σij(t) ∈ {0, 1}, ∀ i ∈ T , ∀ j ∈ R,∀ t. (6)

Constraint (2) ensures that each target location is vis-
ited once and only once by one vehicle; (3) ensures that

the time that a target location is assigned to a vehicle
must be larger than the time when the target location is
generated; and (4) guarantees that each target location

is assigned to at most one vehicle at any time t.

Remark 1 Optimally minimizing (1) is NP-hard even

when no new target locations are dynamically generated;
in this case it is then a variant of the NP-hard vehicle
routing problem (Lenstra and Kan, 1981).

3 Task assignment algorithms

3.1 Algorithms for assigning the initially known target
locations

In this section, to assign the target locations that are
initially known to the vehicles, we first present two task

assignment algorithms: the extended Voronoi cluster-
ing strategy integrated with the smallest marginal cost
principle (EVM), and the marginal-cost-based cluster-

ing strategy (MC) because of their satisfying perfor-
mance for the static multi-vehicle task assignment (Bai
et al, 2017a).

3.1.1 Task assignment algorithm EVM

The EVM first iteratively clusters the target locations
initially known to the vehicles, and then puts the target
locations assigned to each vehicle into a sequence to

minimize the vehicle’s travel time (Bai et al, 2017a).
For each j ∈ R, initialize Tj such that it contains pj(0),
which is the index of the position where vehicle j is

located at t = 0. Add in Tj the indices of those target
locations that have already been assigned to j. Let Tini
be the initial choice of T u(0) that contains the indices

of those unclustered targets at t = 0. Then, for the
EVM, the first target k⋆ in T u(0) to be clustered and
its assigned vehicle j⋆ are determined by

(j⋆, k⋆) = argmin
i∈Tj , j∈R, k∈T u(0)

t(i, k), (7)

where t(i, k) is the time for a vehicle to travel from i to
k. After clustering target k⋆, T u(0) is updated to

T u(0) = T u(0) \ {k⋆}, (8)

while the targets assigned to vehicle j⋆ are updated to

Tj⋆ = Tj⋆ ∪ {k⋆}. (9)

The target clustering procedure continues until T u(0)
is empty.

After assigning the target locations to the vehicles,
the EVM iteratively determines the sequence for each
employed vehicle to visit its assigned target locations.

Let oj(0), initialized as pj(0), store the indices of the
ordered target location for vehicle j for each j ∈ R at
t = 0, and let T u

j , initialized as Tj , contain the targets

in Tj that have not been inserted into oj(0). Then, the
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EVM determines the first target k⋆ in T u
j to be inserted

and its visiting sequence q⋆ for vehicle j by

(k⋆, q⋆) = argmin
1<q≤|oj(0)|+1,

k∈T u
j

{t(oj(0)⊕q k)− t(oj(0))}, (10)

where the operator oj(0)⊕qk inserts the target location

k at the qth position of oj(0) and t(oj(0)) denotes the
total travel time for vehicle j to visit all the targets in
oj(0). If q = |oj(0)|+ 1, oj(0)⊕q k puts target location

k to the end of oj(0). Then, T u
j and oj(0) are updated

to

T u
j = T u

j \ {k⋆}, oj(0) = oj(0)⊕q⋆ k⋆. (11)

The target ordering process continues until T u
j is empty.

3.1.2 Task assignment algorithm MC

Different from the EVM, the task assignment algorithm
MC determines the visiting sequence of a target loca-
tion during its clustering process (Bai et al, 2017a). Let

oj(0) for each j ∈ R and T u(0) be defined as those for
EVM. Then, the first target k⋆ in T u(0) to be clustered,
its assigned vehicle j⋆ and the inserting position q⋆ are

(j⋆, k⋆, q⋆) = argmin
j∈T u, k∈V,
1<q≤|ok|+1

{t(ok ⊕q j)− t(ok)}. (12)

Then, T u(0) and oj⋆(0) are updated to

T u(0) = T u(0) \ {k⋆}, oj⋆(0) = oj⋆(0)⊕q⋆ k⋆. (13)

The target ordering process continues until T u(0) is

empty.

As the vehicles move with the unit speed, the trav-

el cost matrix, containing the time for a vehicle to
move between a set of specified locations, is symmetric
and satisfies the triangular inequality. The worst per-

formance of the solutions, resulting from the EVM and
the MC for minimizing (1), has been investigated in Bai
et al (2017a) as summarized as follows.

Lemma 1 If no new target locations appear, both the
EVM and the MC guarantee that (1) is within twice of

the optimal (Bai et al, 2017a).

Now, we introduce the algorithms to dynamically
assign the target locations based on the EVM and MC.

3.2 Event-triggered dynamic task assignment

In this section, we construct several event-triggered task

assignment algorithms to carry out dynamically target
reassignment whenever a new target appears. Assume
that at time t, a new target location r is generated, and

then Tnew = Tnew ∪ {r} where Tnew is initially empty.

Let oj(t) contain the indices of the ordered target loca-

tions that have not been visited on the path of vehicle
j at time t for each j ∈ R, and oj(t) = [pj(t) oj(t)]
where pj(t) is the index of the vertex where vehicle j

is currently located. If all the target locations on j’s
path have been visited before the generation of the
new target location, vehicle j has stopped moving and

is located at the last visited target location, and then
oj(t) = [pj(t)]. To determine how the newly generat-
ed target location is assigned, we design several event-

triggered task assignment algorithms as follows.

3.2.1 Inserting each newly generated target locations
into the vehicles’ current paths

The first type of the event-triggered task assignment al-
gorithms considers to insert each newly generated tar-

get location into one of the current paths of the vehicles.
We first present the event-triggered EVM for dynam-
ically assigning each newly generated target location,

and the resulting algorithm is named as EEVME.

EEVME first determines the vehicle j⋆ that wins

the newly generated target location r by

j⋆ = argmin
i∈oj(t), j∈R

t(i, r). (14)

Then, the sequence for vehicle j⋆ to visit r is determined
by

q⋆ = argmin
1<q≤|oj⋆ (t)|+1

{t(oj⋆(t)⊕q r)− t(oj⋆(t))}. (15)

Afterwards, oj⋆(t) is updated to

oj⋆(t) = oj⋆(t)⊕q⋆ r. (16)

We also consider the event-triggered MC which dy-

namically inserts each newly generated target location
into the current paths of the vehicles, which we cal-
l EMCE. The algorithm determines that vehicle j⋆ to

be assigned with the newly generated target r and the
corresponding sequence q⋆ for visiting r according to

(j⋆, q⋆) = argmin
j∈R,

1<q≤|oj(t)|+1

{t(oj(t)⊕q r)− t(oj(t))}. (17)

Then, oj⋆(t) is updated as (16).

3.2.2 Reassigning all the target locations currently
unvisited

The second type of the event-triggered task assignment
algorithms considers to reassign all the target location-

s currently unvisited whenever a new target location is
generated. We first present the event-triggered EVM for
dynamically reassigning all the unvisited target loca-

tions whenever a new target location is generated, and
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the resulting algorithm is named as EEVMA. Similar

to the EVM, EEVMA also first clusters all the unvisit-
ed target locations to the vehicles, and then orders the
target locations assigned to each vehicle in sequence.

Let T u(t) contain the indices of those unvisited tar-
gets on the paths of all the vehicles at time t, and

o
2:|oj(t)|
j (t) save the ordered target vertices located be-
tween the second and the |oj(t)|th locations of oj(t) if

|oj(t)| > 1 where |oj(t)| is the length of oj(t). Then,

T u(t) = ∪
j∈R

o
2:|oj(t)|
j (t). (18)

With the generation of the target r at time t, all the
target locations that have not been visited are those in
T u(t) = T u(t)∪{r}. Let oj(t+1), initialized as the in-

dex of vehicle j’s position pj(t) for each j ∈ R, store the
indices of the ordered target locations for vehicle j for
the task reassignment. Then, for EEVMA, the assign-

ment for all the unvisited target locations in T u(t) and
the vehicles’ path oj(t+1) for each j ∈ R are iteratively
updated according to (7) to (11) at the time instant t

until all the unvisited target locations are ordered.

The other one is the event-triggered MC for dy-

namically reassigning all the unvisited target locations
whenever a new target location is generated, which we
call EMCA. Let oj(t) and T u(t) be defined the same as

those for EEVMA. Then, for EMCA, the assignment
for all the unvisited target locations in T u(t) and the
vehicles’ path oj(t + 1) for each j ∈ R are iteratively

updated by (12) and (13) at the time instant t until
T u(t) is empty.

3.3 Time-triggered dynamic task assignment

The event-triggered dynamic task assignment algorithm-
s might require a higher computational effort to change
the assignment of the target locations if the time in-

stants when new target locations are generated are too
close. Generally speaking, time-triggered task assign-
ment algorithms carry out the task reassignment with-

in fixed time horizon. However, it is unnecessary to
reassign the unvisited target locations if no new tar-
get locations have not been generated during a time

horizon. Thus, we design several time-triggered algo-
rithms to dynamically change the target assignmen-
t at the end of each fixed time horizon H if at least

one new target location has been generated during the
time horizon. Let TlH store the indices of newly gener-
ated target locations during the lth time horizon where

l ∈ {1, ..., ⌊ L
H ⌋} and L is the whole time horizon during

which new target locations are generated. For a pos-
itive number a, the flooring function ⌊a⌋ returns the

largest integer that is smaller than or equal to a. Then,

Tnew = Tnew ∪ TlH . Let oj(lH) contain the indices of

the ordered target locations that have not been visited
on the path of vehicle j for each j ∈ R at time lH,
and oj(lH) = [pj(lH) oj(lH)]. If all the target loca-

tions on j’s path have been visited before lH, vehicle j
stops moving and stays at the lastly visited target lo-
cation, and then oj(lH) = [pj(lH)]. To determine how

the target locations newly generated during each time
horizon are assigned, we design several time-triggered
task assignment algorithms as follows.

3.3.1 Inserting the newly generated target locations
into the vehicles’ current paths

The first type of the time-triggered task assignment al-

gorithms considers to insert the target locations new-
ly generated during each time horizon into the curren-
t paths of the employed vehicles. We first present the

time-triggered EVM for dynamically assigning the new-
ly generated target locations at the end of each time
horizon, and the resulting algorithm is called TEVME.

Similar to EEVME, TEVME also first clusters all the
newly generated target locations to the vehicles, and
then inserts the target locations clustered to each vehi-

cle into the vehicle’s current path.

Let Tj , initially empty, store the indices of those tar-

get locations in TlH that have already been assigned to
vehicle j for each j ∈ R, and T u(lH) contain the in-
dices of those unclustered targets, which is initialized as

TlH . Then, the first target k⋆ in T u(lH) to be clustered
and its assigned vehicle j⋆ are determined by

(j⋆, k⋆) = argmin
i∈Tj∪oj(lH), j∈R, k∈T u(lH)

t(i, k). (19)

After clustering target k⋆, T u(lH) is updated to

T u(lH) = T u(lH) \ {k⋆}, (20)

while the newly generated targets assigned to vehicle
j⋆ are updated to

Tj⋆ = Tj⋆ ∪ {k⋆}. (21)

The target clustering procedure continues until T u(lH)
is empty.

Then, if Tj ̸= ∅, TEVME determines the first target
k⋆ in Tj to be inserted and its visiting sequence q⋆ for

vehicle j by

(k⋆, q⋆) = argmin
1<q≤|oj(lH)|+1, k∈Tj

{t(oj(lH)⊕q k)−

t(oj(lH))}. (22)

Afterwards, Tj and oj(lH) are updated to

Tj = Tj \ {k⋆}, oj(lH) = oj(lH)⊕q⋆ k⋆. (23)

The target ordering process continues until Tj is empty.
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Table 1 The mechanisms used to construct the dynamic task assignment algorithms.

Trigger mechanism Origin algorithm
Dynamic task assignment algorithms

Only assign newly generated targets Reassign all the unvisited targets

Event-triggered
G EGE EGA

EVM EEVME EEVMA
MC EMCE EMCA

Time-triggered
G TGE TGA

EVM TEVME TEVMA
MC TMCE TMCA

The other is the time-triggered MC for dynamically
assigning the newly generated target locations into the
current paths of the vehicles at the end of each time

horizon, which we call TMCE. Let T u(lH) contain the
indices of those unclustered targets, which is initialized
as TlH . Then, for TMCE, the assignment of the target

locations in T u(lH) and the vehicles’ paths oj(lH) for
every j ∈ R are iteratively updated by (12) and (13) at
each time instant t = lH until T u(lH) is empty.

3.3.2 Reassigning all the target locations currently

unvisited

The second type of the time-triggered task assignment

algorithms is to reassign all the target locations current-
ly unvisited at the end of each time horizon. We first
present the time-triggered EVM for dynamically reas-

signing all the unvisited target locations at the end of
each time horizon, and the resulting algorithm is called
TEVMA. Similar to the EVM, TEVMA also first clus-

ters all the unvisited target locations to the vehicles,
and then orders the target locations assigned to each
vehicle in sequence.

Let T u(lH) contain the indices of those unvisited
targets on the paths of all the vehicles at time lH, and

o
2:|oj(lH)|
j (lH) store the indices of the ordered target
locations that have not been visited on vehicle j’s path

if |oj(lH)| > 1. Then,

T u(lH) = ∪
j∈R

o
2:|oj(lH)|
j (lH). (24)

With the generation of new target locations TlH dur-

ing the time horizon from t = (l−1)H to t = lH, all the
target locations that have not been visited are those in
T u(lH) = T u(lH) ∪ TlH . Let oj(lH + 1), initialized as

the index of vehicle j’s position pj(lH) for each j ∈ R,
store the indices of the ordered target locations for car-
rying out the task reassignment at time lH. Then, for

TEVMA, the assignment for all the unvisited target lo-
cations in T u(lH) and the vehicles’ path oj(lH+1) for
each j ∈ R are iteratively updated by (7) to (11) at

the time instant t = lH until all the unvisited target
locations are ordered.

The other is the time-triggered MC for dynamical-

ly reassigning all the unvisited target locations at the

end of each time horizon, which we call TMCA. Let
oj(lH + 1) and T u(lH) be defined the same as those
for TEVMA. Then, for TMCA, the assignment for all

the unvisited target locations in T u(lH) and the ve-
hicles’ path oj(lH + 1) for each j ∈ R are iteratively
updated by (12) and (13) at the time instant t = lH

until T u(lH) is empty.

Now we have presented all the design of the algo-

rithms. In the following section, we carry out simulation
studies.

4 Simulations

Monte Carlo simulations are carried out to test the pro-
posed algorithms compared with the popular greedy
task assignment algorithm (G) where vehicles always

move towards the nearest unassigned target location.
The mechanisms to construct the dynamic task assign-
ment algorithms are shown in Table 1. All the experi-

ments have been performed on an Intel Core i5− 4590
CPU 3.30 GHz with 8 GB RAM, and the algorithms are
compiled by Matlab under Windows 7. Let fMST to be

the sum of all the edge weights in one minimum span-
ning tree (MST) of the weighted target-vehicle graph
G whose vertices contain the indices of all the vehicles’

initial locations in R and the targets’ locations in T .
For each pair of nodes of G, if both nodes correspond
to some vehicles’ initial locations, its edge weight is ze-

ro; otherwise, the edge weight is the Euclidean distance
between the two nodes. The solution quality of each
algorithm is quantified by

q =
f

fMST
, (25)

where f is the objective value in (1). Since fMST is a
lower bound of the total travel time of an optimal so-
lution (Rathinam et al, 2007; Bai et al, 2017b), a value

of the ratio q closer to 1 means a better performance
of the solution. An MST of the weighted target-vehicle
graph G can be obtained by Algorithm 1 in Bai et al

(2017a).

The algorithms are first tested on the task assign-

ment problem in which n = 30 target locations initially
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Table 2 The average solution quality q of the algorithms (A)
on 100 test instances for the task assignment problem with
n = 30 target locations and m = 5 vehicles under different
arrival rates r (Hz) of new target locations where the initial
target assignment is from the EVM.

HHHHA
r

0.001 0.002 0.004 0.006 0.008 0.010

EGE 1.3646 1.5005 1.7138 1.8994 2.0708 2.2443
EGA 1.3092 1.3996 1.5479 1.6757 1.7731 1.8687

EEVME 1.3224 1.4151 1.5576 1.6592 1.7359 1.7956
EEVMA 1.3177 1.4072 1.5439 1.6440 1.7219 1.7862
EMCE 1.3180 1.4079 1.5458 1.6508 1.7381 1.8054
EMCA 1.3028 1.3914 1.5341 1.6599 1.7504 1.8421
TGE1 1.3620 1.4912 1.6861 1.8507 1.9912 2.1290
TGA1 1.3198 1.4153 1.5656 1.6919 1.7930 1.8861

TEVME1 1.3316 1.4288 1.5757 1.6835 1.7643 1.8243
TEVMA1 1.3275 1.4239 1.5658 1.6756 1.7567 1.8226
TMCE1 1.3257 1.4211 1.5657 1.6694 1.7600 1.8307
TMCA1 1.3149 1.4082 1.5574 1.6777 1.7759 1.8594
TGE2 1.3638 1.4960 1.7000 1.8747 2.0308 2.1874
TGA2 1.3143 1.4086 1.5619 1.6897 1.7835 1.8805

TEVME2 1.3255 1.4219 1.5671 1.6715 1.7528 1.8106
TEVMA2 1.3221 1.4168 1.5553 1.6579 1.7372 1.8046
TMCE2 1.3213 1.4145 1.5561 1.6605 1.7501 1.8203
TMCA2 1.3093 1.4006 1.5509 1.6718 1.7639 1.8548

distribute in a square area with edge length 103m and
the number of dispersed vehicles ism = 5. One hundred

test instances of the initial positions of the 30 targets
and 5 vehicles are randomly generated, where for each
instance, the arrival times of new target locations, de-

termined by the Poisson process under different rates
r ∈ {0.001, 0.002, 0.004, 0.006, 0.008, 0.010}, are investi-
gated. The appearance of the time instants when new

targets arrive is generated ten times for each test in-
stance under each arrival rate r, and the positions of the
newly generated target locations are randomly generat-

ed. The event-triggered dynamic task assignment algo-
rithms will make a task reassignment whenever a new
target appears. For each test instance, the whole time

horizon L of the time-triggered assignment algorithms
is set to be the lower bound of the minimal total travel
time for the vehicles to visit all the target locations ini-

tially known, which is obtained by solving for an MST
of the corresponding weighted target-vehicle graph. The
average whole time horizon L of the 100 test instances

is 3330.5s, and an average of Lr new target locations
appear under each pair of L and r. The time-triggered
assignment algorithms are tested under two different

time horizons H with ⌊ L
H ⌋ = 10 and ⌊ L

H ⌋ = 20, respec-
tively. During each time horizon H, the time-triggered
assignment algorithms will be activated if at least one

new target location arrives during this time horizon.
The time-triggered assignment algorithms are marked
with subscript 1 if they are triggered with ⌊ L

H ⌋ = 10

and otherwise 2.

Table 3 The corresponding average computation time (s)
for the algorithms (A) to obtain the solutions for the task
assignment problem with n = 30 target locations and m = 5
vehicles under different target arrival rates r (Hz), where the
initial assignment of the target locations is from the EVM.

HHHHA
r

0.001 0.002 0.004 0.006 0.008 0.010

EGE 0.0009 0.0016 0.0027 0.0038 0.0049 0.0062
EGA 0.0046 0.0083 0.0165 0.0252 0.0323 0.0444

EEVME 0.0136 0.0219 0.0438 0.0678 0.0924 0.1191
EEVMA 0.0753 0.1634 0.3557 0.5988 0.8988 1.3541
EMCE 0.0126 0.0214 0.0414 0.0662 0.0878 0.1146
EMCA 0.0818 0.1503 0.3324 0.5344 0.7942 1.0851
TGE1 0.0022 0.0034 0.0052 0.0067 0.0077 0.0087
TGA1 0.0043 0.0066 0.0103 0.0128 0.0139 0.0159

TEVME1 0.0307 0.0502 0.0812 0.1090 0.1339 0.1605
TEVMA1 0.0684 0.1195 0.1960 0.2777 0.3393 0.4160
TMCE1 0.0191 0.0287 0.0440 0.0571 0.0708 0.0832
TMCA1 0.0426 0.0688 0.1069 0.1389 0.1683 0.1996
TGE2 0.0026 0.0040 0.0066 0.0089 0.0104 0.0125
TGA2 0.0052 0.0086 0.0149 0.0199 0.0251 0.0278

TEVME2 0.0370 0.0585 0.0939 0.1266 0.1445 0.1843
TEVMA2 0.0872 0.1576 0.2940 0.4367 0.5707 0.7336
TMCE2 0.0276 0.0411 0.0641 0.0864 0.1086 0.1382
TMCA2 0.0793 0.1360 0.2370 0.3346 0.4286 0.5358

To invest the impact of the initial assignment of
the target locations on the following task assignmen-

t, the algorithms are first tested with the assignment
of the initially known target locations resulting from
the EVM. The average q of the algorithms on all the

instances under each arrival rate r is shown in Table
2, and the corresponding average computation time for
the algorithms to plan the paths for the vehicles is listed

in Table 3. In Table 2, the proposed algorithms gener-
ally have a smaller average q compared with the greedy
algorithms under different scenarios, and the average q

of each proposed task assignment algorithm is at worst
around 1.32 times of the optimal under a small arrival
rate r = 0.001 of new targets, which shows the satisfy-

ing performance of the algorithms for the static multi-
vehicle task assignment. Secondly, for each assignment
algorithm, the average q shown in Table 2 increases

with the increase of the arrival rate r. The reason is
that the task assignment algorithms only have the po-
sitions of those target locations just appeared to make

task reassignment to the vehicles at each triggered time
instant, where the positions of the target locations that
will appear in the coming time horizon are unknown.

As a result, the more frequent generations of new target
locations from a given time, the higher is their impact
on the quality of the current assignment of the tar-

get locations. However, the average q of the algorithm-
s is still within twice of the optimal even under the
higher arrival rate r = 0.010 of the new targets, which

shows the robustness of the algorithms. Thirdly, under
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Table 4 The average solution quality q of the algorithms (A)
on 100 test instances for the task assignment problem with
n = 30 target locations and m = 5 vehicles under different
arrival rates r (Hz) of new target locations where the initial
assignment of the target locations is from the MC.

HHHHA
r

0.001 0.002 0.004 0.006 0.008 0.010

EGE 1.2940 1.4310 1.6461 1.8385 2.0172 2.1970
EGA 1.2709 1.3788 1.5432 1.6768 1.7819 1.8738

EEVME 1.2705 1.3784 1.5415 1.6599 1.7466 1.8190
EEVMA 1.2756 1.3884 1.5398 1.6505 1.7337 1.8007
EMCE 1.2669 1.3726 1.5351 1.6562 1.7543 1.8347
EMCA 1.2642 1.3726 1.5348 1.6597 1.7589 1.8477
TGE1 1.2929 1.4240 1.6250 1.7937 1.9414 2.0828
TGA1 1.2787 1.3899 1.5600 1.6960 1.8047 1.8936

TEVME1 1.2780 1.3917 1.5604 1.6850 1.7806 1.8514
TEVMA1 1.2818 1.3954 1.5575 1.6781 1.7668 1.8378
TMCE1 1.2735 1.3865 1.5507 1.6748 1.7755 1.8555
TMCA1 1.2724 1.3864 1.5518 1.6784 1.7808 1.8652
TGE2 1.2939 1.4275 1.6362 1.8145 1.9764 2.1387
TGA2 1.2741 1.3857 1.5567 1.6926 1.7966 1.8909

TEVME2 1.2737 1.3845 1.5537 1.6730 1.7634 1.8356
TEVMA2 1.2788 1.3924 1.5525 1.6633 1.7469 1.8177
TMCE2 1.2698 1.3795 1.5439 1.6642 1.7652 1.8505
TMCA2 1.2686 1.3797 1.5475 1.6694 1.7745 1.8623

each arrival rate r, each event-triggered algorithm of
EGE, EGA, EEVME, EEVMA, EMCE and EMCA re-

spectively has a smaller q than the corresponding time-
triggered algorithm of TGE, TGA, TEVME, TEVMA,
TMCE and TMCA under both of the two time hori-

zons, as shown in Table 2. This can be partly explained
by the fact that the event-triggered algorithms perform
task reassignment whenever a new target appear, which

makes them have a faster response to the newly gener-
ated targets.

However, Table 3 shows that the better performance

of the event-triggered algorithms is generally at the
cost of a longer computation time with the exception of
EEVME and EMCE compared with TEVME and TM-

CE. That might be explained by the NP-hardness of
the task assignment problem where iteratively inserting
each newly generated target of all the targets generat-

ed during each time horizon into the current vehicles’
paths is less time-consuming than that of inserting a
small bundle of the targets generated during the time

horizon into the current vehicles’ paths. Furthermore,
Table 2 shows that EEVMA, and TEVMA have a small-
er q in the comparison respectively with EEVME and

TEVME which just insert the newly generated target
locations into the current paths of the vehicles. We ob-
serve that reassigning all the remaining unvisited target

locations enables EEVMA and TEVMA to plan a more
efficient sequence for the vehicles to visit all the unvis-
ited target locations in response to the newly generated

target locations. In addition, the average q of TEVME2,

Table 5 The corresponding average computation time (s)
for the algorithms (A) to obtain the solutions for the task
assignment problem with n = 30 target locations and m = 5
vehicles under different target arrival rates r (Hz), where the
initial assignment of the target locations is from the MC.

HHHHA
r

0.001 0.002 0.004 0.006 0.008 0.010

EGE 0.0009 0.0016 0.0027 0.0038 0.0049 0.0061
EGA 0.0041 0.0077 0.0169 0.0243 0.0316 0.0423

EEVME 0.0128 0.0225 0.0426 0.0659 0.0863 0.1242
EEVMA 0.0744 0.1592 0.3673 0.6426 0.9684 1.4286
EMCE 0.0123 0.0216 0.0407 0.0648 0.0860 0.1195
EMCA 0.0418 0.1432 0.3119 0.4965 0.7343 1.1020
TGE1 0.0021 0.0034 0.0050 0.0065 0.0074 0.0089
TGA1 0.0038 0.0062 0.0098 0.0120 0.0130 0.0140

TEVME1 0.0266 0.0411 0.0705 0.0852 0.1141 0.1359
TEVMA1 0.0481 0.0887 0.1453 0.2063 0.2704 0.3372
TMCE1 0.0176 0.0264 0.0404 0.0548 0.0640 0.0773
TMCA1 0.0473 0.0800 0.1299 0.1759 0.2291 0.2686
TGE2 0.0027 0.0039 0.0065 0.0090 0.0112 0.0130
TGA2 0.0048 0.0082 0.0144 0.0200 0.0247 0.0267

TEVME2 0.0338 0.0543 0.0884 0.1227 0.1532 0.1834
TEVMA2 0.0668 0.1250 0.2349 0.3456 0.4699 0.6131
TMCE2 0.0231 0.0325 0.0489 0.0649 0.0783 0.0953
TMCA2 0.0656 0.1144 0.2014 0.2867 0.3707 0.4665

TEVMA2, TMCE2 and TMCA2 is smaller than that of
TEVME1, TEVMA1, TMCE1 and TMCA1, respective-

ly. This is because shortening the time horizon H from
⌊ L
H ⌋ = 10 to ⌊ L

H ⌋ = 20 enables TEVME2, TEVMA2,
TMCE2 and TMCA2 to readjust the vehicles’ current

paths in a faster response to the newly generated target
locations compared with TEVME1, TEVMA1, TMCE1

and TMCA1. However, the smaller q of the algorithms

is also at the cost of longer computation time as shown
in Table 3. What is more, if the time horizon H is
short enough, the proposed time-triggered algorithm-

s TEVME, TEVMA, TMCE and TMCA are respec-
tively in essence the event-triggered EEVME, EEVMA,
EMCE and EMCA as at the end of each time horizon

TEVME, TEVMA, TMCE and TMCA are triggered
only if at least one new target locations is generated
during the horizon.

Finally, EMCA has the smallest average q among all
the algorithms when the arrival rate r is low as in the set
{0.001, 0.002, 0.004} while EEVMA is the best under a

higher r ∈ {0.006, 0.008, 0.010}. This is interesting since
in Bai et al (2017a) we have both theoretically proved
and experimentally shown that the MC is better than

the EVM in the static multi-vehicle task assignment
problem where no new target locations are dynamically
generated. The reason can be that EMCA can better

assign the existing unvisited target locations if not so
many new target locations appear as in the static multi-
vehicle task assignment Bai et al (2017a) while EEVME

performs better under a higher r as it assigns a target
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Table 6 The average solution quality q of the algorithms
(A) on 50 test instances for the task assignment problem with
n = 50 target locations and m = 10 vehicles under different
arrival rates r (Hz) of new target locations where the initial
assignment is from the EVM.

HHHHA
r

0.001 0.002 0.004 0.006 0.008 0.010

EGE 1.3011 1.3917 1.5506 1.6978 1.8183 1.9325
EGA 1.2709 1.3375 1.4715 1.5946 1.6929 1.7855

EEVME 1.2840 1.3667 1.5120 1.6334 1.7226 1.8045
EEVMA 1.2794 1.3580 1.4941 1.6088 1.6967 1.7823
EMCE 1.2817 1.3615 1.5000 1.6222 1.7098 1.7992
EMCA 1.2646 1.3343 1.4660 1.5822 1.6839 1.7742
TGE 1.3013 1.3906 1.5459 1.6848 1.7985 1.9069
TGA 1.2763 1.3454 1.4829 1.6052 1.7059 1.8032

TEVME 1.2864 1.3708 1.5131 1.6390 1.7293 1.8149
TEVMA 1.2823 1.3611 1.4985 1.6179 1.7144 1.7900
TMCE 1.2843 1.3658 1.5022 1.6254 1.7162 1.8063
TMCA 1.2720 1.3455 1.4772 1.5993 1.6989 1.7900

based on both the vehicles’ current locations and the
locations of the targets already assigned to the vehicles
and finally inserts the targets using the marginal-cost

principle.

Then, the algorithms are tested with the initial as-

signment of the target locations resulting from the MC
where the arrival time instants of each new target loca-
tion under every arrival rate r and their positions are

the same as those for the previous experiment when the
algorithms are tested with the assignment of the initial-
ly known target locations resulting from the EVM. The

average q of the algorithms on the instances under each
arrival rate r is shown in Table 4, and the correspond-
ing average computation time for the algorithms to plan

the paths for the vehicles is listed in Table 5. General-
ly speaking, the average q of the algorithms shown in
Table 4 has the same changing trend with those shown

in Table 2 when increasing r, and EMCA has the best
performance when r ∈ {0.001, 0.002, 0.004} while EEV-
MA is the best under a higher r ∈ {0.006, 0.008, 0.010},
which shows the algorithms’ robustness.c

However, some new phenomena are noticed. Firstly,

under a low arrival rate r ∈ {0.001, 0.002, 0.004}, each
of the proposed algorithms and the compared greedy
algorithms has a better performance than the corre-

sponding same algorithm with the initial assignment of
the target locations resulting from the EVM in the com-
parison of Table 2 and Table 4. The reason can be that

the assignment of the initial target locations resulting
from the MC is better than those from the EVM as the
arrival time as well as the positions of the new gener-

ated target locations are the same for the two simula-
tion setups. Secondly, when r ∈ {0.006, 0.008, 0.010},
the average q of each proposed algorithm with the ini-

tial assignment resulting from MC shown in Table 4 is

Table 7 The corresponding average computation time (s)
for the algorithms (A) to obtain the solutions for the task
assignment problem with n = 50 target locations and m = 10
vehicles under different target arrival rates r (Hz), where the
initial assignment is from the EVM.

HHHHA
r

0.001 0.002 0.004 0.006 0.008 0.010

EGE 0.0015 0.0023 0.0039 0.0056 0.0072 0.0094
EGA 0.0067 0.0121 0.0224 0.0353 0.0427 0.0603

EEVME 0.0168 0.0257 0.0454 0.0630 0.0792 0.0837
EEVMA 0.0821 0.2239 0.2270 0.4740 0.7308 0.9909
EMCE 0.0134 0.0222 0.0456 0.0608 0.0768 0.1011
EMCA 0.0555 0.0718 0.1620 0.2186 0.2791 0.3703
TGE 0.0031 0.0041 0.0065 0.0078 0.0091 0.0105
TGA 0.0055 0.0084 0.0120 0.0140 0.0152 0.0167

TEVME 0.0429 0.0694 0.1025 0.1161 0.1604 0.1769
TEVMA 0.0670 0.1233 0.1770 0.2676 0.2814 0.3845
TMCE 0.0193 0.0411 0.0620 0.0815 0.1272 0.1529
TMCA 0.0597 0.1321 0.2243 0.2476 0.2762 0.3914

generally larger than that of the average q of the same
algorithm with the initial assignment resulting from the
EVM as shown in Table 2. That again shows that the

EVM-based algorithms are more robust against a high-
er arrival rate r of new target locations compared with
the MC-based algorithms as previously analyzed, which

shows EMCA has the smallest average q among all the
algorithms when r ∈ {0.001, 0.002, 0.004} while EEV-
MA is the best under r ∈ {0.006, 0.008, 0.010}.

To further test the scalability of the proposed algo-
rithms, we test the algorithms on the task assignment

problem in which m = 10 dispersed vehicles and n = 50
target locations initially distribute in the same square
area. Fifty test instances of the initial positions of the 50

targets and 10 vehicles are randomly generated, where
for each instance, the arrival times of new target loca-
tions determined by the Poisson process under different

rates r ∈ {0.001, 0.002, 0.004, 0.006, 0.008, 0.010} are in-
vestigated. Ten appearances of the time instants when
new targets arrive are generated for each test instance

under each arrival rate r, and the newly generated tar-
get locations are randomly distributed. For each test in-
stance, the whole time horizon L of the time-triggered

assignment algorithms is also set to be the lower bound
of the minimal total travel time for the vehicles to visit
all the target locations initially known. The average w-

hole time horizon L of the 50 test instances is 4117.6s,
and the time-triggered assignment algorithms are test-
ed under the time horizon H with ⌊ L

H ⌋ = 20.

The average q of the algorithms with the initial as-
signment resulting from both the EVM and the MC

are respectively shown in Table 6 and Table 8, and the
corresponding average computation time for each algo-
rithm to achieve the solutions are shown in Table 7 and

Table 9. Firstly, the average q of each proposed algo-
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Table 8 The average solution quality q of the algorithms
(A) on 50 test instances for the task assignment problem with
n = 50 target locations and m = 10 vehicles under different
arrival rates r (Hz) of new target locations where the initial
assignment is from the MC.

HHHHA
r

0.001 0.002 0.004 0.006 0.008 0.010

EGE 1.2376 1.3281 1.4895 1.6386 1.7600 1.8793
EGA 1.2284 1.3085 1.4539 1.5831 1.6863 1.7818

EEVME 1.2261 1.3055 1.4513 1.5799 1.6836 1.7785
EEVMA 1.2344 1.3204 1.4697 1.5902 1.6835 1.7740
EMCE 1.2241 1.3027 1.4437 1.5715 1.6700 1.7680
EMCA 1.2210 1.3006 1.4418 1.5641 1.6652 1.7619
TGE 1.2371 1.3269 1.4830 1.6239 1.7388 1.8508
TGA 1.2301 1.3100 1.4546 1.5803 1.6871 1.7848

TEVME 1.2287 1.3101 1.4566 1.5867 1.6926 1.7847
TEVMA 1.2328 1.3166 1.4599 1.5891 1.6920 1.7817
TMCE 1.2263 1.3066 1.4478 1.5747 1.6770 1.7743
TMCA 1.2230 1.3040 1.4457 1.5714 1.6736 1.7693

rithm shown in Table 6 and Table 8 also increases with
a higher arrival rate r of new targets as those in Table
2 and Table 4. However, the average q of the algorithms

under different r is within twice of the optimal, which
shows the algorithms’ satisfying performance. Second-
ly, the average q of each proposed algorithm shown in

Table 8 under each arrival rate r is smaller than that
the corresponding one shown in Table 6, which shows
the initial assignment of the target locations resulting

from the MC leads to a smaller q for the algorithms.
The reason is that the new target locations arrive dur-
ing the movement of the vehicles where a better initial

assignment leads to a faster visiting of the existing tar-
get locations. Thirdly, Table 6 and Table 8 both show
that the average q of EMCA under each r is the smallest

among all the proposed algorithms, which verifies the
satisfying performance of EMCA. However, the average
computation time of EMCE is the smallest among all

the proposed algorithms as shown in Table 7 and Table
9.

As discussed above, we first conclude that a short-
er time horizon H leads to a better performance for

the time-triggered task assignment algorithms accord-
ing to the average solution quality q shown in Table 2
and Table 4. However, the average computation time

of the time-triggered task assignment algorithms with
a shorter H is longer according to Table 3 and Table 5.
Secondly, the average q listed in Table 2, Table 4, Table

6 and Table 8 shows that each of the proposed event-
triggered task assignment algorithms performs better
than the corresponding time-triggered task assignmen-

t algorithm under each arrival rate r. As an example,
EEVME has the smaller q compared with TEVME un-
der each r, and so does EEVMA compared with TEV-

MA. That is because the event-triggered task assign-

Table 9 The corresponding average computation time (s)
for the algorithms (A) to obtain the solutions for the task
assignment problem with n = 50 target locations and m = 10
vehicles under different target arrival rates r (Hz), where the
initial assignment is from the MC.

HHHHA
r

0.001 0.002 0.004 0.006 0.008 0.010

EGE 0.0015 0.0023 0.0039 0.0055 0.0071 0.0092
EGA 0.0066 0.0108 0.0229 0.0322 0.0427 0.0540

EEVME 0.0131 0.0282 0.0459 0.0637 0.0836 0.1100
EEVMA 0.0795 0.1294 0.2327 0.4112 0.4343 0.8228
EMCE 0.0166 0.0280 0.0367 0.0512 0.0579 0.1094
EMCA 0.0635 0.1203 0.2396 0.3775 0.5255 0.6859
TGE 0.0030 0.0040 0.0060 0.0073 0.0087 0.0101
TGA 0.0049 0.0069 0.0105 0.0119 0.0128 0.0142

TEVME 0.0349 0.0629 0.1309 0.1689 0.2050 0.2053
TEVMA 0.0546 0.1039 0.1735 0.2666 0.4016 0.4453
TMCE 0.0190 0.0396 0.0527 0.0583 0.0947 0.1369
TMCA 0.0730 0.0784 0.1930 0.2198 0.2731 0.4084

ment algorithms assign targets whenever a new target
location appears, which guides to adjust the vehicles’

paths in a faster response to the newly generated tar-
get locations compared with the time-triggered task as-
signment algorithms. However, the computation time

of the event-triggered task assignment algorithms that
reassign all the target locations currently unvisited is
longer compared with the corresponding time-triggered

task assignment algorithms that make a task reassign-
ment during each fixed time period. Furthermore, a-
mong the event-triggered task assignment algorithms,

EEVMA and EMCA perform better than EEVME and
EMCE, respectively. However, the better performance
of them is generally at the cost of a longer computation

time as shown in Table 3, Table 5, Table 7 and Table 9.
Finally, Table 3, Table 5, Table7 and Table 9 show the
scalability of the proposed task assignment algorithms

for dealing with the dynamic multi-vehicle task assign-
ment with moderate numbers of targets and vehicles
under different arrival rates of new targets. Generally

speaking, for the dynamic multi-vehicle task assignmen-
t, it is suggested to use EMCA to plan routes for the
vehicles if more computation time is allowed as it gen-

erally has the best performance among the algorithms,
and otherwise one may choose to use EMCE as it can
still achieve a satisfying solution under a shorter com-

putation time compared with EMCA.

5 Conclusion

In this paper, we have investigated the dynamic task

assignment for multiple vehicles to visit a set of tar-
get locations where some target locations are initially
known and the others are dynamically randomly gener-

ated. The problem is to employ the vehicles to visit all
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the target locations while minimizing the vehicles’ to-

tal travel time. Both event-triggered and time-triggered
dynamic target assignments have been studied to in-
vestigate when the appropriate time instants should be

to change the assignment of the target locations in re-
sponse to the newly generated target locations. In ad-
dition, for both the event-triggered and time-triggered

task assignments, we have designed several task assign-
ment algorithms to investigate how to assign the new-
ly generated target locations based on the existing as-

signment of the vehicles. Numerical simulations have
shown the satisfying performance of the event-triggered
task assignment algorithms compared with their time-

triggered counterparts under different arrival rates of
the newly generated target locations. Future works will
focus on developing more efficient task assignment al-

gorithms to deal with the multi-vehicle task assignment
in a more complex dynamic environment in which po-
tential malfunctions of the vehicles will be considered.
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