27,177 research outputs found
Plane Formation by Synchronous Mobile Robots in the Three Dimensional Euclidean Space
Creating a swarm of mobile computing entities frequently called robots,
agents or sensor nodes, with self-organization ability is a contemporary
challenge in distributed computing. Motivated by this, we investigate the plane
formation problem that requires a swarm of robots moving in the three
dimensional Euclidean space to land on a common plane. The robots are fully
synchronous and endowed with visual perception. But they do not have
identifiers, nor access to the global coordinate system, nor any means of
explicit communication with each other. Though there are plenty of results on
the agreement problem for robots in the two dimensional plane, for example, the
point formation problem, the pattern formation problem, and so on, this is the
first result for robots in the three dimensional space. This paper presents a
necessary and sufficient condition for fully-synchronous robots to solve the
plane formation problem that does not depend on obliviousness i.e., the
availability of local memory at robots. An implication of the result is
somewhat counter-intuitive: The robots cannot form a plane from most of the
semi-regular polyhedra, while they can form a plane from every regular
polyhedron (except a regular icosahedron), whose symmetry is usually considered
to be higher than any semi-regular polyhedrdon
Dimensional effects in Efimov physics
Efimov physics is drastically affected by the change of spatial dimensions.
Efimov states occur in a tridimensional (3D) environment, but disappear in two
(2D) and one (1D) dimensions. In this paper, dedicated to the memory of Prof.
Faddeev, we will review some recent theoretical advances related to the effect
of dimensionality in the Efimov phenomenon considering three-boson systems
interacting by a zero-range potential. We will start with a very ideal case
with no physical scales, passing to a system with finite energies in the
Born-Oppenheimer (BO) approximation and finishing with a general system. The
physical reason for the appearance of the Efimov effect is given essentially by
two reasons which can be revealed by the BO approximation - the form of the
effective potential is proportional to ( is the relative distance
between the heavy particles) and its strength is smaller than the critical
value given by , where is the effective dimension
Comment on "Efimov States and their Fano Resonances in a Neutron-Rich Nucleus"
By introducing a mass asymmetry in a non-Borromean three-body system, without
changing the energy relations, the virtual state pole cannot move from the
negative real axis of the complex energy plane (with nonzero width) and become
a resonance, because the analytical structure of the unitarity cuts remains the
same.Comment: To be published in PR
Radii in weakly-bound light halo nuclei
A systematic study of the root-mean-square distance between the constituents
of weakly-bound nuclei consisting of two halo neutrons and a core is performed
using a renormalized zero-range model. The radii are obtained from a universal
scaling function that depends on the mass ratio of the neutron and the core, as
well as on the nature of the subsystems, bound or virtual. Our calculations are
qualitatively consistent with recent data for the neutron-neutron
root-mean-square distance in the halo of Li and Be nuclei
Klotho mice: a novel wound model of aged skin.
BackgroundAs the elderly population continues to expand, it becomes increasingly important to develop treatments to improve wound healing in the elderly. One problem limiting the research is the lack of appropriate animal models for wound healing in elderly patients. We hypothesized that the Klotho mouse of premature aging is a suitable animal model to shed light on many of the biological processes involved in aging skin.MethodsKlotho mice (kl/kl), Klotho-heterozygous mice (kl/+), and wild-type mice (+/+) were wounded, and the area of the wound was measured every 3 days until the wound was healed. To compare the klotho phenotype with wild-type mice, wounds were also harvested at 4 and 7 days after wounding. For histological examination, paraffin-embedded sections were stained with hematoxylin and eosin and Masson trichrome. Collagen expression in the wound was also studied by analyzing messenger RNA using real-time polymerase chain reaction.ResultsKlotho mice showed a significantly slower rate of wound closure compared with Klotho-heterozygous mice and wild-type mice. Histology showed substantial less healing and collagen deposition in the wounds of the Klotho mice. The expression of collagen messenger RNA in Klotho mice was also less than that in heterozygous and wild-type mice. The Klotho mice exhibited significant phenotypic similarities with aged skin, such as atrophy and delayed wound healing.ConclusionThese preliminary data suggest that the Klotho mouse may be a model to further investigate wound healing in the elderly
Electroweak Phase Transition and LHC Signatures in the Singlet Majoron Model
We reconsider the strength of the electroweak phase transition in the singlet
Majoron extension of the Standard Model, with a low (~TeV) scale of the singlet
VEV. A strongly first order phase transition, of interest for electroweak
baryogenesis, is found in sizeable regions of the parameter space, especially
when the cross-coupling lambda_{hs}|S|^2|H|^2 between the singlet and the
doublet Higgs is significant. Large Majorana Yukawa couplings of the singlet
neutrinos, y_i S nu_i^c nu_i, are also important for strengthening the
transition. We incorporate the LEP and Tevatron constraints on the Higgs
masses, and electroweak precision constraints, in our search for allowed
parameters; successful examples include singlet masses ranging from 5 GeV to
several TeV. Models with a strong phase transition typically predict a
nonstandard Higgs with mass in the range 113 GeV < m_H < 200 GeV and production
cross sections reduced by mixing with the singlet, with cos^2(theta)
significantly less than 1. We also find examples where the singlet is light and
the decay H -> SS can modify the Higgs branching ratios relative to Standard
Model expectations.Comment: 36 pages, 18 figure
- …
