2,636 research outputs found

    Small-Angle Neutron Scattering and Magnetization Study of HoNi2B2C

    Get PDF
    The superconducting and magnetic properties of HoNi2B2C single crystals are investigated through transport, magnetometry and small-angle neutron scattering measurements. In the magnetic phases that enter below the superconducting critical temperature, the small-angle neutron scattering data uncover networks of magnetic surfaces. These likely originate from uncompensated moments e.g. at domain walls pinned to crystallographic grain boundaries. The field and temperature dependent behaviour appears consistent with the metamagnetic transitions reported in earlier works.Comment: 11 pages , 4 figures, submitted to Low Temperature Physic

    Multiferroicity in the generic easy-plane triangular lattice antiferromagnet RbFe(MoO4)2

    Full text link
    RbFe(MoO4)2 is a quasi-two-dimensional (quasi-2D) triangular lattice antiferromagnet (TLA) that displays a zero-field magnetically-driven multiferroic phase with a chiral spin structure. By inelastic neutron scattering, we determine quantitatively the spin Hamiltonian. We show that the easy-plane anisotropy is nearly 1/3 of the dominant spin exchange, making RbFe(MoO4)2 an excellent system for studying the physics of the model 2D easy-plane TLA. Our measurements demonstrate magnetic-field induced fluctuations in this material to stabilize the generic finite-field phases of the 2D XY TLA. We further explain how Dzyaloshinskii-Moriya interactions can generate ferroelectricity only in the zero field phase. Our conclusion is that multiferroicity in RbFe(MoO4)2, and its absence at high fields, results from the generic properties of the 2D XY TLA.Comment: 5 pages, 5 figures, accepted in PRB as a Rapid Communicatio

    Nonlinear Evolution of the Genus Statistics with Zel'dovich Approximation

    Full text link
    Evolution of genus density is calculated from Gaussian initial conditions using Zel'dovich approximation. A new approach is introduced which formulates the desired quantity in a rotationally invariant manner. It is shown that normalized genus density does not depend on the initial spectral shape but is a function of the fluctuation amplitude only.Comment: 21 pages, 6 Postscript figures, LaTe

    An infrared approach to Reggeization

    Get PDF
    We present a new approach to Reggeization of gauge amplitudes based on the universal properties of their infrared singularities. Using the "dipole formula", a compact ansatz for all infrared singularities of massless amplitudes, we study Reggeization of singular contributions to high-energy amplitudes for arbitrary color representations, and any logarithmic accuracy. We derive leading-logarithmic Reggeization for general cross-channel color exchanges, and we show that Reggeization breaks down for the imaginary part of the amplitude at next-to-leading logarithms and for the real part at next-to-next-to-leading logarithms. Our formalism applies to multiparticle amplitudes in multi-Regge kinematics, and constrains possible corrections to the dipole formula starting at three loops.Comment: 4 page

    Boomerang returns unexpectedly

    Get PDF
    Experimental study of the anisotropy in the cosmic microwave background (CMB) is gathering momentum. The eagerly awaited Boomerang results have lived up to expectations. They provide convincing evidence in favor of the standard paradigm: the Universe is close to flat and with primordial fluctuations which are redolent of inflation. Further scrutiny reveals something even more exciting however -- two hints that there may be some unforeseen physical effects. Firstly the primary acoustic peak appears at slightly larger scales than expected. Although this may be explicable through a combination of mundane effects, we suggest it is also prudent to consider the possibility that the Universe might be marginally closed. The other hint is provided by a second peak which appears less prominent than expected. This may indicate one of a number of possibilities, including increased damping length or tilted initial conditions, but also breaking of coherence or features in the initial power spectrum. Further data should test whether the current concordance model needs only to be tweaked, or to be enhanced in some fundamental way.Comment: 11 pages, 3 figures, final version accepted by Ap

    The abundance of high-redshift objects as a probe of non-Gaussian initial conditions

    Get PDF
    The observed abundance of high-redshift galaxies and clusters contains precious information about the properties of the initial perturbations. We present a method to compute analytically the number density of objects as a function of mass and redshift for a range of physically motivated non-Gaussian models. In these models the non-Gaussianity can be dialed from zero and is assumed to be small. We compute the probability density function for the smoothed dark matter density field and we extend the Press and Schechter approach to mildly non-Gaussian density fields. The abundance of high-redshift objects can be directly related to the non-Gaussianity parameter and thus to the physical processes that generated deviations from the Gaussian behaviour. Even a skewness parameter of order 0.1 implies a dramatic change in the predicted abundance of z\gap 1 objects. Observations from NGST and X-ray satellites (XMM) can be used to accurately measure the amount of non-Gaussianity in the primordial density field.Comment: Minor changes to match the accepted ApJ version (ApJ, 539

    The intermittent behavior and hierarchical clustering of the cosmic mass field

    Get PDF
    The hierarchical clustering model of the cosmic mass field is examined in the context of intermittency. We show that the mass field satisfying the correlation hierarchy ξnQn(ξ2)n1\xi_n\simeq Q_n(\xi_2)^{n-1} is intermittent if κ<d\kappa < d, where dd is the dimension of the field, and κ\kappa is the power-law index of the non-linear power spectrum in the discrete wavelet transform (DWT) representation. We also find that a field with singular clustering can be described by hierarchical clustering models with scale-dependent coefficients QnQ_n and that this scale-dependence is completely determined by the intermittent exponent and κ\kappa. Moreover, the singular exponents of a field can be calculated by the asymptotic behavior of QnQ_n when nn is large. Applying this result to the transmitted flux of HS1700 Lyα\alpha forests, we find that the underlying mass field of the Lyα\alpha forests is significantly intermittent. On physical scales less than about 2.0 h1^{-1} Mpc, the observed intermittent behavior is qualitatively different from the prediction of the hierarchical clustering with constant QnQ_n. The observations, however, do show the existence of an asymptotic value for the singular exponents. Therefore, the mass field can be described by the hierarchical clustering model with scale-dependent QnQ_n. The singular exponent indicates that the cosmic mass field at redshift 2\sim 2 is weakly singular at least on physical scales as small as 10 h1^{-1} kpc.Comment: AAS Latex file, 33 pages,5 figures included, accepted for publication in Ap

    The anisotropic Heisenberg chain in coexisting transverse and longitudinal magnetic fields

    Full text link
    The one-dimensional spin-1/2 XXZXXZ model in a mixed transverse and longitudinal magnetic field is studied. Using the specially developed version of the mean-field approximation the order-disorder transition induced by the magnetic field is investigated. The ground state phase diagram is obtained. The behavior of the model in low transverse field is studied on the base of conformal field theory. The relevance of our results to the observed phase transition in the quasi-one-dimensional antiferromagnet Cs2CoCl4Cs_2 Co Cl_4 is discussed.Comment: 18 pages, 6 figure

    Double-kink fishbone instability caused by circulating energetic ions

    Get PDF
    The destabilization of double kink modes by the circulating energetic ions in tokamaks with the plasma current having an off-axis maximum is studied. It is shown that the high-frequency fishbone instability [Energetic Particle Mode (EPM)] and the low-frequency (diamagnetic) fishbones are possible for such an equilibrium, their poloidal and toroidal mode numbers being not necessarily equal to unity. A new kind of the EPM instability, ''doublet fishbones,'' is predicted. This instability is characterized by two frequencies; it can occur in a plasma with a non-monotonic radial profile of the energetic ions when the particle orbit width is less than the width of the region where the mode is localized. It is found that the diamagnetic fishbone branch exists even when the orbit width exceeds the mode width; in this case, however, the instability growth rate is relatively small

    Generalized statistical models of voids and hierarchical structure in cosmology

    Get PDF
    Generalized statistical models of voids and hierarchical structure in cosmology are developed. The often quoted negative binomial model and frequently used thermodynamic model are shown to be special cases of a more general distribution which contains a parameter "a". The parameter is related to the Levy index alpha and the Fisher critical exponent tau, the latter describing the power law fall off of clumps of matter around a phase transition. The parameter"a", exponent tau, or index alpha can be obtained from properties of a void scaling function. A stochastic probability variable "p" is introduced into a statistical model which represent the adhesive growth of galaxy structure. For p<1/2, the galaxy count distribution decays exponential fast with size. For p>1/2, an adhesive growth can go on indefinitely thereby forming an infinite supercluster. At p=1/2 a scale free power law distribution for the galaxy count distribution is present. The stochastic description also leads to consequences that have some parallels with cosmic string results, percolation theory and phase transitions.Comment: 25 page
    corecore