RbFe(MoO4)2 is a quasi-two-dimensional (quasi-2D) triangular lattice
antiferromagnet (TLA) that displays a zero-field magnetically-driven
multiferroic phase with a chiral spin structure. By inelastic neutron
scattering, we determine quantitatively the spin Hamiltonian. We show that the
easy-plane anisotropy is nearly 1/3 of the dominant spin exchange, making
RbFe(MoO4)2 an excellent system for studying the physics of the model 2D
easy-plane TLA. Our measurements demonstrate magnetic-field induced
fluctuations in this material to stabilize the generic finite-field phases of
the 2D XY TLA. We further explain how Dzyaloshinskii-Moriya interactions can
generate ferroelectricity only in the zero field phase. Our conclusion is that
multiferroicity in RbFe(MoO4)2, and its absence at high fields, results from
the generic properties of the 2D XY TLA.Comment: 5 pages, 5 figures, accepted in PRB as a Rapid Communicatio