7 research outputs found

    Anatomic and histological study of the anterolateral aspect of the knee: a SANTI Group investigation

    Get PDF
    Background: The structure and function of the anterolateral aspect of the knee have been significantly debated, with renewed interest in this topic since the description of the anterolateral ligament (ALL). Purpose: To define and describe the distinct structures of the lateral knee and to correlate the macroscopic and histologic anatomic features. Study Design: Descriptive laboratory study. Methods: Twelve fresh-frozen human cadavers were used for anatomic analysis. In the left knee, a layer-by-layer dissection and macroscopic analysis were performed. In the right knee, an en bloc specimen was obtained encompassing an area from the Gerdy tubercle to the posterior fibular head and extending proximally from the anterior aspect to the posterior aspect of the lateral femoral epicondyle. The en bloc resection was then frozen, sliced at the level of the joint line, and reviewed by a musculoskeletal pathologist. Results: Macroscopically, the lateral knee has 4 main layers overlying the capsule of the knee: the aponeurotic layer, the superficial layer including the iliotibial band (ITB), the deep fascial layer, and the ALL. Histologically, 8 of 12 specimens demonstrated 4 consistent, distinct structures: the ITB, the ALL, the lateral collateral ligament, and the meniscus. Conclusion: The lateral knee has a complex orientation of layers and fibers. The ALL is a distinct structure from the ITB and is synonymous to the previously described capsulo-osseous layer of the ITB. Clinical Relevance: Increasingly, lateral extra-articular procedures are performed at the time of anterior cruciate ligament reconstruction. Understanding the anatomic features of the anterolateral aspect of the knee is necessary to understand the biomechanics and function of the structures present and allows surgeons to attempt to replicate those anatomic characteristics when performing extra-articular reconstruction

    Restoring tibiofemoral alignment during ACL reconstruction results in better knee biomechanics

    Get PDF
    "Published online: 24 October 2017"PURPOSE: Anterior cruciate ligament (ACL) reconstruction (ACLR) aims to restore normal knee joint function, stability and biomechanics and in the long term avoid joint degeneration. The purpose of this study is to present the anatomic single bundle (SB) ACLR that emphasizes intraoperative correction of tibiofemoral subluxation that occurs after ACL injury. It was hypothesized that this technique leads to optimal outcomes and better restoration of pathological tibiofemoral joint movement that results from ACL deficiency (ACLD). METHODS: Thirteen men with unilateral ACLD were prospectively evaluated before and at a mean follow-up of 14.9 (SD = 1.8) months after anatomic SB ACLR with bone patellar tendon bone autograft. The anatomic ACLR replicated the native ACL attachment site anatomy and graft orientation. Emphasis was placed on intraoperative correction of tibiofemoral subluxation by reducing anterior tibial translation (ATT) and internal tibial rotation. Function was measured with IKDC, Lysholm and the Tegner activity scale, ATT was measured with the KT-1000 arthrometer and tibial rotation (TR) kinematics were measured with 3Dmotion analysis during a high-demand pivoting task. RESULTS: The results showed significantly higher TR of the ACL-deficient knee when compared to the intact knee prior to surgery (12.2° ± 3.7° and 10.7° ± 2.6° respectively, P = 0.014). Postoperatively, the ACLR knee showed significantly lower TR as compared to the ACL-deficient knee (9.6°±3.1°, P = 0.001) but no difference as compared to the control knee (n.s.). All functional scores were significantly improved and ATT was restored within normal values (P < 0.001). CONCLUSIONS: Intraoperative correction of tibiofemoral subluxation that results after ACL injury is an important step during anatomic SB ACLR. The intraoperative correction of tibiofemoral subluxation along with the replication of native ACL anatomy results in restoration of rotational kinematics of ACLD patients to normal levels that are comparable to the control knee. These results indicate that the reestablishment of tibiofemoral alignment during ACLR may be an important step that facilitates normal knee kinematics postoperatively. LEVEL OF EVIDENCE: Level II, prospective cohort study.The authors gratefully acknowledge the funding support from the Hellenic Association of Orthopaedic Surgery and Traumatology (HAOST-EEXOT)info:eu-repo/semantics/publishedVersio

    The anterolateral complex of the knee: results from the International ALC Consensus Group Meeting

    Get PDF
    The structure and function of the anterolateral complex (ALC) of the knee has created much controversy since the 're-discovery' of the anterolateral ligament (ALL) and its proposed role in aiding control of anterolateral rotatory laxity in the anterior cruciate ligament (ACL) injured knee. A group of surgeons and researchers prominent in the field gathered to produce consensus as to the anatomy and biomechanical properties of the ALC. The evidence for and against utilisation of ALC reconstruction was also discussed, generating a number of consensus statements by following a modified Delphi process. Key points include that the ALC consists of the superficial and deep aspects of the iliotibial tract with its Kaplan fibre attachments on the distal femur, along with the ALL, a capsular structure within the anterolateral capsule. A number of structures attach to the area of the Segond fracture including the capsule-osseous layer of the iliotibial band, the ALL and the anterior arm of the short head of biceps, and hence it is not clear which is responsible for this lesion. The ALC functions to provide anterolateral rotatory stability as a secondary stabiliser to the ACL. Whilst biomechanical studies have shown that these structures play an important role in controlling stability at the time of ACL reconstruction, the optimal surgical procedure has not yet been defined clinically. Concern remains that these procedures may cause constraint of motion, yet no clinical studies have demonstrated an increased risk of osteoarthritis development. Furthermore, clinical evidence is currently lacking to support clear indications for lateral extra-articular procedures as an augmentation to ACL reconstruction. The resulting statements and scientific rationale aim to inform readers on the most current thinking and identify areas of needed basic science and clinical research to help improve patient outcomes following ACL injury and subsequent reconstruction. Level of evidence V

    Anterolateral Ligament Expert Group consensus paper on the management of internal rotation and instability of the anterior cruciate ligament - deficient knee

    Get PDF
    Purpose of this paper is to provide an overview of the latest research on the anterolateral ligament (ALL) and present the consensus of the ALL Expert Group on the anatomy, radiographic landmarks, biomechanics, clinical and radiographic diagnosis, lesion classification, surgical technique and clinical outcomes. A consensus on controversial subjects surrounding the ALL and anterolateral knee instability has been established based on the opinion of experts, the latest publications on the subject and an exchange of experiences during the ALL Experts Meeting (November 2015, Lyon, France). The ALL is found deep to the iliotibial band. The femoral origin is just posterior and proximal to the lateral epicondyle; the tibial attachment is 21.6 mm posterior to Gerdy's tubercle and 4-10 mm below the tibial joint line. On a lateral radiographic view the femoral origin is located in the postero-inferior quadrant and the tibial attachment is close to the centre of the proximal tibial plateau. Favourable isometry of an ALL reconstruction is seen when the femoral position is proximal and posterior to the lateral epicondyle, with the ALL being tight upon extension and lax upon flexion. The ALL can be visualised on ultrasound, or on T2-weighted coronal MRI scans with proton density fat-suppressed evaluation. The ALL injury is associated with a Segond fracture, and often occurs in conjunction with acute anterior cruciate ligament (ACL) injury. Recognition and repair of the ALL lesions should be considered to improve the control of rotational stability provided by ACL reconstruction. For high-risk patients, a combined ACL and ALL reconstruction improves rotational control and reduces the rate of re-rupture, without increased postoperative complication rates compared to ACL-only reconstruction. In conclusion this paper provides a contemporary consensus on all studied features of the ALL. The findings warrant future research in order to further test these early observations, with the ultimate goal of improving the long-term outcomes of ACL-injured patients. Level of evidence Level V-Expert opinion
    corecore