640 research outputs found

    Vertical spinal electronic device with large room temperature magnetoresistance

    Get PDF
    We report experimental transport measurements of a vertical hybrid ferromagnetic (FM)/III-V semiconductor (SC)/ferromagnetic(FM) type structure, i.e., Cr(20ML)/Co(15ML)/GaAs(50 nm, n-type)/Al/sub 0.3/Ga/sub 0.7/As(200 nm, n-type)/FeNi(30 nm). The current-voltage (I-V) characteristics reveal Schottky/tunneling type behavior in the direction of FeNi/Semiconductor/Co and observed to be dependent on external magnetic field. The magnetoresistance (MR) behavior shows a strong dependence on the measured current and field. At low fields no significant change in MR has been observed with increasing current. However, at high fields the MR initially increases with increasing current and becomes stable beyond a critical current of 10 /spl mu/A. A maximum of 12% change in the MR has been observed at room temperature, which is far larger than that of the conventional AMR effect. This property of the device could be utilized as field sensors or magnetic logic devices

    A study of aerosol liquid water content based on hygroscopicity measurements at high relative humidity in the North China Plain

    Get PDF
    Water can be a major component of aerosol particles, also serving as a medium for aqueous-phase reactions. In this study, a novel method is presented to calculate the aerosol liquid water content at high relative humidity based on measurements of aerosol hygroscopic growth factor, particle number size distribution and relative humidity in the Haze in China (HaChi) summer field campaign (July–August 2009) in the North China Plain. The aerosol liquid water content calculated using this method agreed well with that calculated using a thermodynamic equilibrium model (ISORROPIA II) at high relative humidity (>60%) with a correlation coefficient of 0.96. At low relative humidity (<60%), an underestimation was found in the calculated aerosol liquid water content by the thermodynamic equilibrium model. This discrepancy mainly resulted from the ISORROPIA II model, which only considered limited aerosol chemical compositions. The mean and maximum values of aerosol liquid water content during the HaChi campaign reached 1.69 × 10−4 g m−3 and 9.71 × 10−4 g m−3, respectively. A distinct diurnal variation of the aerosol liquid water content was found, with lower values during daytime and higher ones at night. The aerosol liquid water content depended strongly on the relative humidity. The aerosol liquid water content in the accumulation mode dominated the total aerosol liquid water content

    Applying Bayesian Neural Networks to Separate Neutrino Events from Backgrounds in Reactor Neutrino Experiments

    Full text link
    A toy detector has been designed to simulate central detectors in reactor neutrino experiments in the paper. The samples of neutrino events and three major backgrounds from the Monte-Carlo simulation of the toy detector are generated in the signal region. The Bayesian Neural Networks(BNN) are applied to separate neutrino events from backgrounds in reactor neutrino experiments. As a result, the most neutrino events and uncorrelated background events in the signal region can be identified with BNN, and the part events each of the fast neutron and 8^{8}He/9^{9}Li backgrounds in the signal region can be identified with BNN. Then, the signal to noise ratio in the signal region is enhanced with BNN. The neutrino discrimination increases with the increase of the neutrino rate in the training sample. However, the background discriminations decrease with the decrease of the background rate in the training sample.Comment: 9 pages, 1 figures, 1 tabl

    Threshold image target segmentation technology based on intelligent algorithms

    Get PDF
    This paper briefly introduces the optimal threshold calculation model and particle swarm optimization (PSO) algorithm for image segmentation and improves the PSO algorithm. Then the standard PSO algorithm and improved PSO algorithm were used in MATLAB software to make simulation analysis on image segmentation. The results show that the improved PSO algorithm converges faster and has higher fitness value; after the calculation of the two algorithms, it is found that the improved PSO algorithm is better in the subjective perspective, and the image obtained by the improved PSO segmentation has higher regional consistency and takes shorter time in the perspective of quantitative objective data. In conclusion, the improved PSO algorithm is effective in image segmentation

    Improving Application of Bayesian Neural Networks to Discriminate Neutrino Events from Backgrounds in Reactor Neutrino Experiments

    Full text link
    The application of Bayesian Neural Networks(BNN) to discriminate neutrino events from backgrounds in reactor neutrino experiments has been described in Ref.\cite{key-1}. In the paper, BNN are also used to identify neutrino events in reactor neutrino experiments, but the numbers of photoelectrons received by PMTs are used as inputs to BNN in the paper, not the reconstructed energy and position of events. The samples of neutrino events and three major backgrounds from the Monte-Carlo simulation of a toy detector are generated in the signal region. Compared to the BNN method in Ref.\cite{key-1}, more 8^{8}He/9^{9}Li background and uncorrelated background in the signal region can be rejected by the BNN method in the paper, but more fast neutron background events in the signal region are unidentified using the BNN method in the paper. The uncorrelated background to signal ratio and the 8^{8}He/9^{9}Li background to signal ratio are significantly improved using the BNN method in the paper in comparison with the BNN method in Ref.\cite{key-1}. But the fast neutron background to signal ratio in the signal region is a bit larger than the one in Ref.\cite{key-1}.Comment: 9 pages, 1 figure and 1 table, accepted by Journal of Instrumentatio

    Risk factors for Lyme disease : A scale-dependent effect of host species diversity and a consistent negative effect of host phylogenetic diversity

    Get PDF
    Biodiversity can influence disease risk. One example of a diversity-disease relationship is the dilution effect, which suggests higher host species diversity (often indexed by species richness) reduces disease risk. While numerous studies support the dilution effect, its generality remains controversial. Most studies of diversity-disease relationships have overlooked the potential importance of phylogenetic diversity. Furthermore, most studies have tested diversity-disease relationships at one spatial scale, even though such relationships are likely scale dependent. Using Lyme disease as a model system, we investigated the effects of host species richness and phylogenetic relatedness on the number of reported Lyme disease cases in humans in the U.S.A. at two spatial scales (the county level and the state level) using piecewise structural equation modelling. We also accounted for relevant climatic and habitat-related factors and tested their correlations with the number of Lyme disease cases. We found that species assemblages with more related species (i.e., host species in the order Rodentia) were associated with more Lyme disease cases in humans. Host species richness correlated negatively with the number of Lyme disease cases at the state level (i.e., a dilution effect), a pattern that might be explained by the higher number of reservoir-incompetent species at high levels of species richness at this larger spatial scale. In contrast, a positive correlation was found between species richness and the number of Lyme disease cases at the county level, where a higher proportion of rodent species was associated with higher levels of species richness, potentially amplifying the disease risk. Our results highlight that analyse at a single spatial scale can miss some impacts of biodiversity on human health. Thus, multi-scale analyses with consideration of host phylogenetic diversity are critical for improving our understanding of diversity-disease relationships.Peer reviewe

    Structure and properties of composite Ni–Co–Mn coatings on metal interconnects by electrodeposition

    Get PDF
    In order to obtain the high conductivity values and wide spinel stability region for solid oxide fuel cell interconnect, several multilayer Ni, Co and Mn coatings are electroplated and then oxidized in air to form spinel oxide layers. Potentiodynamic polarization curves in different simple solutions are tested to analyze the deposition behavior of Co and Mn. Microstructures and compositions of Ni–Co–Mn multi-layers by adjusting the thickness and deposition parameters are analyzed by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results show that area specific resistance value of sample B–Ni/Co after oxidation at 750 °C for 500h is the lowest among the coatings, and the resistance values at 700 °C and 800 °C are 35.3 and 31.7 mΩ‧cm2, respectively. When the Ni transition layer in the vicinity of coating/substrate interface is thick, it will lead to the outward diffusion and aggregation of element Fe to form Fe-rich oxide intermediate layer, which will affect the high-temperature performance of the coating. Pure Co and CoMn alloy coatings with a certain thickness can effectively prevent the inward diffusion of oxygen and the outward diffusion of Fe and Cr at high temperature. The thin Ni transition layer combined with the thick Co layer or CoMn layer has the best element diffusion inhibition and high temperature electrical properties during the long-term high-temperature oxidation process

    Detection of herb-symptom associations from traditional chinese medicine clinical data

    Get PDF
    YesTraditional Chinese medicine (TCM) is an individualized medicine by observing the symptoms and signs (symptoms in brief) of patients. We aim to extract the meaningful herb-symptom relationships from large scale TCM clinical data. To investigate the correlations between symptoms and herbs held for patients, we use four clinical data sets collected from TCM outpatient clinical settings and calculate the similarities between patient pairs in terms of the herb constituents of their prescriptions and their manifesting symptoms by cosine measure. To address the large-scale multiple testing problems for the detection of herb-symptom associations and the dependence between herbs involving similar efficacies, we propose a network-based correlation analysis (NetCorrA) method to detect the herb-symptom associations. The results show that there are strong positive correlations between symptom similarity and herb similarity, which indicates that herb-symptom correspondence is a clinical principle adhered to by most TCM physicians. Furthermore, the NetCorrA method obtains meaningful herb-symptom associations and performs better than the chi-square correlation method by filtering the false positive associations. Symptoms play significant roles for the prescriptions of herb treatment. The herb-symptom correspondence principle indicates that clinical phenotypic targets (i.e., symptoms) of herbs exist and would be valuable for further investigations

    Measurements of the observed cross sections for e+ee^+e^-\to exclusive light hadrons containing π0π0\pi^0\pi^0 at s=3.773\sqrt s= 3.773, 3.650 and 3.6648 GeV

    Full text link
    By analyzing the data sets of 17.3, 6.5 and 1.0 pb1^{-1} taken, respectively, at s=3.773\sqrt s= 3.773, 3.650 and 3.6648 GeV with the BES-II detector at the BEPC collider, we measure the observed cross sections for e+eπ+ππ0π0e^+e^-\to \pi^+\pi^-\pi^0\pi^0, K+Kπ0π0K^+K^-\pi^0\pi^0, 2(π+ππ0)2(\pi^+\pi^-\pi^0), K+Kπ+ππ0π0K^+K^-\pi^+\pi^-\pi^0\pi^0 and 3(π+π)π0π03(\pi^+\pi^-)\pi^0\pi^0 at the three energy points. Based on these cross sections we set the upper limits on the observed cross sections and the branching fractions for ψ(3770)\psi(3770) decay into these final states at 90% C.L..Comment: 7 pages, 2 figure
    corecore