56 research outputs found
An algebra of deformation quantization for star-exponentials on complex symplectic manifolds
The cotangent bundle to a complex manifold is classically endowed
with the sheaf of \cor-algebras \W[T^*X] of deformation quantization, where
\cor\eqdot \W[\rmptt] is a subfield of \C[[\hbar,\opb{\hbar}]. Here, we
construct a new sheaf of \cor-algebras \TW[T^*X] which contains \W[T^*X]
as a subalgebra and an extra central parameter . We give the symbol calculus
for this algebra and prove that quantized symplectic transformations operate on
it. If is any section of order zero of \W[T^*X], we show that
\exp(t\opb{\hbar} P) is well defined in \TW[T^*X].Comment: Latex file, 24 page
On the cohomology of pseudoeffective line bundles
The goal of this survey is to present various results concerning the
cohomology of pseudoeffective line bundles on compact K{\"a}hler manifolds, and
related properties of their multiplier ideal sheaves. In case the curvature is
strictly positive, the prototype is the well known Nadel vanishing theorem,
which is itself a generalized analytic version of the fundamental
Kawamata-Viehweg vanishing theorem of algebraic geometry. We are interested
here in the case where the curvature is merely semipositive in the sense of
currents, and the base manifold is not necessarily projective. In this
situation, one can still obtain interesting information on cohomology, e.g. a
Hard Lefschetz theorem with pseudoeffective coefficients, in the form of a
surjectivity statement for the Lefschetz map. More recently, Junyan Cao, in his
PhD thesis defended in Grenoble, obtained a general K{\"a}hler vanishing
theorem that depends on the concept of numerical dimension of a given
pseudoeffective line bundle. The proof of these results depends in a crucial
way on a general approximation result for closed (1,1)-currents, based on the
use of Bergman kernels, and the related intersection theory of currents.
Another important ingredient is the recent proof by Guan and Zhou of the strong
openness conjecture. As an application, we discuss a structure theorem for
compact K{\"a}hler threefolds without nontrivial subvarieties, following a
joint work with F.Campana and M.Verbitsky. We hope that these notes will serve
as a useful guide to the more detailed and more technical papers in the
literature; in some cases, we provide here substantially simplified proofs and
unifying viewpoints.Comment: 39 pages. This survey is a written account of a lecture given at the
Abel Symposium, Trondheim, July 201
Interpolation in non-positively curved K\"ahler manifolds
We extend to any simply connected K\"ahler manifold with non-positive
sectional curvature some conditions for interpolation in and in
the unit disk given by Berndtsson, Ortega-Cerd\`a and Seip. The main tool is a
comparison theorem for the Hessian in K\"ahler geometry due to Greene, Wu and
Siu, Yau.Comment: 9 pages, Late
Cohomological aspects on complex and symplectic manifolds
We discuss how quantitative cohomological informations could provide
qualitative properties on complex and symplectic manifolds. In particular we
focus on the Bott-Chern and the Aeppli cohomology groups in both cases, since
they represent useful tools in studying non K\"ahler geometry. We give an
overview on the comparisons among the dimensions of the cohomology groups that
can be defined and we show how we reach the -lemma
in complex geometry and the Hard-Lefschetz condition in symplectic geometry.
For more details we refer to [6] and [29].Comment: The present paper is a proceeding written on the occasion of the
"INdAM Meeting Complex and Symplectic Geometry" held in Cortona. It is going
to be published on the "Springer INdAM Series
The Geometry and Moduli of K3 Surfaces
These notes will give an introduction to the theory of K3 surfaces. We begin
with some general results on K3 surfaces, including the construction of their
moduli space and some of its properties. We then move on to focus on the theory
of polarized K3 surfaces, studying their moduli, degenerations and the
compactification problem. This theory is then further enhanced to a discussion
of lattice polarized K3 surfaces, which provide a rich source of explicit
examples, including a large class of lattice polarizations coming from elliptic
fibrations. Finally, we conclude by discussing the ample and Kahler cones of K3
surfaces, and give some of their applications.Comment: 34 pages, 2 figures. (R. Laza, M. Schutt and N. Yui, eds.
Cohomological characterizations of projective spaces and hyperquadrics
We confirm Beauville's conjecture that claims that if the p-th exterior power
of the tangent bundle of a smooth projective variety contains the p-th power of
an ample line bundle, then the variety is either the projective space or the
p-dimensional quadric hypersurface.Comment: Added Lemma 2.8 and slightly changed proof of Lemma 6.2 to make them
apply for torsion-free sheaves and not only to vector bundle
Oka's inequality for currents and applications
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46241/1/208_2005_Article_BF01446636.pd
Holomorphic Functions on Bundles Over Annuli
We consider a family E_m(D,M) of holomorphic bundles constructed as follows:
to any given M in GL_n(Z), we associate a "multiplicative automorphism" f of
(C*)^n. Now let D be a f-invariant Stein Reinhardt domain in (C*)^n. Then
E_m(D,M) is defined as the flat bundle over the annulus of modulus m>0, with
fiber D, and monodromy f. We show that the function theory on E_m(D,M) depends
nontrivially on the parameters m, M and D. Our main result is that
E_m(D,M) is Stein if and only if m log(r(M)) <= 2 \pi^2, where r(M) denotes
the max of the spectral radii of M and its inverse. As corollaries, we: --
obtain a classification result for Reinhardt domains in all dimensions; --
establish a similarity between two known counterexamples to a question of J.-P.
Serre; -- suggest a potential reformulation of a disproved conjecture of Siu
Y.-T
Existence of Kähler–Einstein metrics and multiplier ideal sheaves on del Pezzo surfaces
We apply Nadel’s method of multiplier ideal sheaves to show that every complex del Pezzo surface of degree at most six whose automorphism group acts without fixed points has a Kähler–Einstein metric. In particular, all del Pezzo surfaces of degree 4, 5, or 6 and certain special del Pezzo surfaces of lower degree are shown to have a Kähler–Einstein metric. These existence statements are not new, but the proofs given in the present paper are less involved than earlier ones by Siu, Tian and Tian–Yau
Differential inequalities on complete Riemannian manifolds and applications
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46226/1/208_2005_Article_BF01455859.pd
- …