56 research outputs found

    An algebra of deformation quantization for star-exponentials on complex symplectic manifolds

    Get PDF
    The cotangent bundle TXT^*X to a complex manifold XX is classically endowed with the sheaf of \cor-algebras \W[T^*X] of deformation quantization, where \cor\eqdot \W[\rmptt] is a subfield of \C[[\hbar,\opb{\hbar}]. Here, we construct a new sheaf of \cor-algebras \TW[T^*X] which contains \W[T^*X] as a subalgebra and an extra central parameter tt. We give the symbol calculus for this algebra and prove that quantized symplectic transformations operate on it. If PP is any section of order zero of \W[T^*X], we show that \exp(t\opb{\hbar} P) is well defined in \TW[T^*X].Comment: Latex file, 24 page

    On the cohomology of pseudoeffective line bundles

    Full text link
    The goal of this survey is to present various results concerning the cohomology of pseudoeffective line bundles on compact K{\"a}hler manifolds, and related properties of their multiplier ideal sheaves. In case the curvature is strictly positive, the prototype is the well known Nadel vanishing theorem, which is itself a generalized analytic version of the fundamental Kawamata-Viehweg vanishing theorem of algebraic geometry. We are interested here in the case where the curvature is merely semipositive in the sense of currents, and the base manifold is not necessarily projective. In this situation, one can still obtain interesting information on cohomology, e.g. a Hard Lefschetz theorem with pseudoeffective coefficients, in the form of a surjectivity statement for the Lefschetz map. More recently, Junyan Cao, in his PhD thesis defended in Grenoble, obtained a general K{\"a}hler vanishing theorem that depends on the concept of numerical dimension of a given pseudoeffective line bundle. The proof of these results depends in a crucial way on a general approximation result for closed (1,1)-currents, based on the use of Bergman kernels, and the related intersection theory of currents. Another important ingredient is the recent proof by Guan and Zhou of the strong openness conjecture. As an application, we discuss a structure theorem for compact K{\"a}hler threefolds without nontrivial subvarieties, following a joint work with F.Campana and M.Verbitsky. We hope that these notes will serve as a useful guide to the more detailed and more technical papers in the literature; in some cases, we provide here substantially simplified proofs and unifying viewpoints.Comment: 39 pages. This survey is a written account of a lecture given at the Abel Symposium, Trondheim, July 201

    Interpolation in non-positively curved K\"ahler manifolds

    Full text link
    We extend to any simply connected K\"ahler manifold with non-positive sectional curvature some conditions for interpolation in C\mathbb{C} and in the unit disk given by Berndtsson, Ortega-Cerd\`a and Seip. The main tool is a comparison theorem for the Hessian in K\"ahler geometry due to Greene, Wu and Siu, Yau.Comment: 9 pages, Late

    Cohomological aspects on complex and symplectic manifolds

    Get PDF
    We discuss how quantitative cohomological informations could provide qualitative properties on complex and symplectic manifolds. In particular we focus on the Bott-Chern and the Aeppli cohomology groups in both cases, since they represent useful tools in studying non K\"ahler geometry. We give an overview on the comparisons among the dimensions of the cohomology groups that can be defined and we show how we reach the \partial\overline\partial-lemma in complex geometry and the Hard-Lefschetz condition in symplectic geometry. For more details we refer to [6] and [29].Comment: The present paper is a proceeding written on the occasion of the "INdAM Meeting Complex and Symplectic Geometry" held in Cortona. It is going to be published on the "Springer INdAM Series

    The Geometry and Moduli of K3 Surfaces

    Get PDF
    These notes will give an introduction to the theory of K3 surfaces. We begin with some general results on K3 surfaces, including the construction of their moduli space and some of its properties. We then move on to focus on the theory of polarized K3 surfaces, studying their moduli, degenerations and the compactification problem. This theory is then further enhanced to a discussion of lattice polarized K3 surfaces, which provide a rich source of explicit examples, including a large class of lattice polarizations coming from elliptic fibrations. Finally, we conclude by discussing the ample and Kahler cones of K3 surfaces, and give some of their applications.Comment: 34 pages, 2 figures. (R. Laza, M. Schutt and N. Yui, eds.

    Cohomological characterizations of projective spaces and hyperquadrics

    Full text link
    We confirm Beauville's conjecture that claims that if the p-th exterior power of the tangent bundle of a smooth projective variety contains the p-th power of an ample line bundle, then the variety is either the projective space or the p-dimensional quadric hypersurface.Comment: Added Lemma 2.8 and slightly changed proof of Lemma 6.2 to make them apply for torsion-free sheaves and not only to vector bundle

    Holomorphic Functions on Bundles Over Annuli

    Full text link
    We consider a family E_m(D,M) of holomorphic bundles constructed as follows: to any given M in GL_n(Z), we associate a "multiplicative automorphism" f of (C*)^n. Now let D be a f-invariant Stein Reinhardt domain in (C*)^n. Then E_m(D,M) is defined as the flat bundle over the annulus of modulus m>0, with fiber D, and monodromy f. We show that the function theory on E_m(D,M) depends nontrivially on the parameters m, M and D. Our main result is that E_m(D,M) is Stein if and only if m log(r(M)) <= 2 \pi^2, where r(M) denotes the max of the spectral radii of M and its inverse. As corollaries, we: -- obtain a classification result for Reinhardt domains in all dimensions; -- establish a similarity between two known counterexamples to a question of J.-P. Serre; -- suggest a potential reformulation of a disproved conjecture of Siu Y.-T

    Existence of Kähler–Einstein metrics and multiplier ideal sheaves on del Pezzo surfaces

    Full text link
    We apply Nadel’s method of multiplier ideal sheaves to show that every complex del Pezzo surface of degree at most six whose automorphism group acts without fixed points has a Kähler–Einstein metric. In particular, all del Pezzo surfaces of degree 4, 5, or 6 and certain special del Pezzo surfaces of lower degree are shown to have a Kähler–Einstein metric. These existence statements are not new, but the proofs given in the present paper are less involved than earlier ones by Siu, Tian and Tian–Yau
    corecore