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Abstract We discuss how quantitative cohomological informations could provide
qualitative properties on complex and symplectic manifolds. In particular we focus
on the Bott-Chern and the Aeppli cohomology groups in both cases, since they
represent useful tools in studying non Kähler geometry. We give an overview on the
comparisons among the dimensions of the cohomology groups that can be defined
and we show how we reach the @@-lemma in complex geometry and the Hard-
Lefschetz condition in symplectic geometry. For more details we refer to Angella
and Tardini (Proc Am Math Soc 145(1):273–285, 2017) and Tardini and Tomassini
(Int J Math 27(12), 1650103 (20 pp.), 2016).

1 Introduction

In this note we discuss the informations that we can obtain on both complex and
symplectic (not necessarily Kähler) manifolds studying the space of forms endowed
with suitable differential operators; in particular, we focus on how quantitative
cohomological properties could provide qualitative informations on the manifold.
Recall that a smooth Kähler manifold is a complex manifold endowed with a
Hermitian metric whose fundamental 2-form is d-closed. For dimensional reasons
every Riemann surface is Kähler but in higher dimension this is not true in general.
In complex dimension two, Kählerness can be topologically characterized in terms
of the first Betti number (see [20, 25, 27]) but a similar result does not hold in
dimension greater than two. Nevertheless there are many topological obstructions to
the existence of a Kähler metric on a manifold, for example the odd Betti numbers
are even and the even Betti numbers are positive. These results follow from the
strong requests on the involved geometric structures and their deep relations. It
seems therefore natural to ask what happens if we weaken those structures and/or
their relations. In particular we could weaken the complex condition looking at non
integrable almost-complex structures or we could look at complex manifolds with a
weaker metric condition (e.g., balancedmetrics [24], SKT metrics [13], etc.). On the
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other side we could ignore the (almost-)complex structure focusing the attention on
the existence of a non-degenerate d-closed 2-form (i.e., a symplectic form) moving
therefore to symplectic geometry. In any case, an important global tool in studying
smooth manifold is furnished by cohomology, more precisely cohomology groups
that are invariant for the considered geometric structures.

In complex non-Kähler geometry it turns out that the classical de Rham and
Dolbeault cohomology groups do not suffice in studying a complex manifold (see
e.g., [2]), indeed many informations are contained in the Bott-Chern and Aeppli
cohomologies, defined, on a complex manifold X, respectively as

H!;!
BC .X/ WD

Ker @ \ Ker @

Im @@
; H!;!

A .X/ WD Ker @@

Im @C Im @
:

They represent a bridge between a topological invariant (the de Rham cohomology)
and a complex invariant (the Dolbeault cohomology). In general we have the
following picture:

where the maps are the ones induced by the identity. Generally suchmaps are neither
injective nor surjective but when the map H!;!

BC .X/ !! H!;!
A .X/ is injective, the

manifold X is said to satisfy the @@-lemma. Every Kähler manifold satisfies the @@-
lemma but the converse is not true. In this paper we will compare the dimensions
of these cohomology groups recalling some results contained in [7] and [6]; in
particular we will focus on how just knowing the dimensions of the Bott-Chern
(and dually Aeppli) cohomology groups we can understand whether the @@-lemma
holds. More precisely,

Theorem 1 (See Theorems 3 and 5, Remark 2) Let X be a compact complex
manifold. Then, the following facts are equivalent:

1. the @@-lemma holds on X;
2. !k WDP

pCqDk

!
dimCH

p;q
BC.X/C dimCH

p;q
A .X/

"
! 2 bk D 0 , for any k 2 Z;

3.
P

pCqDk

!
dimCH

p;q
BC.X/! dimCH

p;q
A .X/

"
D 0, for any k 2 Z.

Moreover, if X has complex dimension 2, then X is Kähler if and only if !2 D 0.
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In a similar fashion on a compact symplectic manifold .X; !/ it is possible to
consider the symplectic Bott-Chern and Aeppli cohomology groups, as defined
by Tseng and Yau in [31] by using the operators d and its symplectic-adjoint
d". They are the appropriate cohomology groups in order to study symplectic
Hodge theory. In the present work, similarly to the complex case, we will consider
some comparisons among the dimensions of these cohomology groups collecting
some results contained in [6, 8] and [28]. It turns out that the symplectic Bott-
Chern cohomology H!

dCd".X/ (and dually Aeppli cohomology H!
dd".X/) suffices

to characterize the dd"-lemma, indeed we have the following

Theorem 2 (See [8, 15, 16, 22, 23, 35], Theorem 8) Let .X; !/ be a compact
symplectic manifold of dimension 2n. Then, the following facts are equivalent:

1. the hard-Lefschetz condition (HLC for short) holds, i.e., the maps

Œ!#k W Hn"k
dR .X/ !! HnCk

dR .X/; 0 " k " n

are all isomorphisms;
2. the dd"-lemma holds, i.e., the natural maps induced by the identity

H!
dCd".X/ !! H!

dR.X/ are injective;
3. !k WD dim Hk

dCd".X/C dim Hk
dd".X/! 2 bk D 0 , for any k 2 Z.

Moreover, if X has dimension 4, then X satisfies HLC if and only if !2 D 0.

2 Complex Cohomologies

We begin this section with some preliminaries and fixing some notations. Let X be
a compact complex manifold of complex dimension n. With Ap;q.X/ we denote the
space of complex . p; q/-forms on X. As a consequence of the integrability of the
complex structure the triple

#
A!;!.X/; @; @

$
represents a double complex, indeed

the following relations hold: @2 D 0, @
2 D 0 and @@C @@ D 0.

The complex de Rham, Dolbeault and conjugate Dolbeault cohomology groups
of X have been widely studied and they are defined, respectively, as

H!
dR.XIC/ WD

Ker d
Im d

; H!;!
@
.X/ WD Ker @

Im @
; H!;!

@ .X/ WD Ker @
Im @

:

Roughly speaking, if we draw a double complex as follows, for the Dolbeault
cohomology we are looking at vertical arrows, since the operator @ changes the
second degree of a . p; q/-form, and for its conjugate we are looking at horizontal
arrows, since the operator @ changes the first degree of a . p; q/-form. For a
more detailed explanation of the interpretation of a double complex as a sum of
indecomposable objects as zig-zag, dots and squares we refer to [3].
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For instance, in the above picture we mean that @˛ D ˇ, @˛ D @̌ D 0, @$ D
ı and @$ D @ı D 0. So ˛ and ˇ are representatives of two non-trivial classes
in H!;!

@ .X/ and ˇ represents the trivial class in H0;2

@
.X/. Similarly goes for ı and

$ . Notice that we can not have two consecutive vertical (resp. horizontal) arrows
because @

2 D 0 (resp. @2 D 0).
Nevertheless there is no natural map between the de Rham (a topological

invariant) and Dolbeault (a holomorphic invariant) cohomologies, in this sense
a bridge between them is furnished by the Bott-Chern [14] and the Aeppli [1]
cohomology groups defined by

H!;!
BC .X/ WD

Ker @ \ Ker @

Im @@
; H!;!

A .X/ WD Ker @@

Im @C Im @
:

The same definitions can be stated, more generally, for a double complex .B!;!; @; @/
of vector spaces. In this way we are taking into accounts the corners in the double
complex of forms. For example looking at this picture

the forms ˛ and $ are representatives of two non-trivial classes in H!;!
A .X/ and ˇ; ı

in H!;!
BC .X/. Namely, ingoing corners contribute to the Bott-Chern cohomology and

outgoing corners to the Aeppli cohomology.
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As regards the algebraic structure, a very easy computation shows that the
product induced by the wedge product on forms induces a structure of algebra for the
Bott-Chern cohomology of a complex manifoldH!;!

BC .X/ and a structure of H
!;!
BC .X/-

module for the Aeppli cohomologyH!;!
A .X/.

In [26], see also [21], Hodge theory for the Bott-Chern and the Aeppli cohomolo-
gies is developed. In particular, once fixed a Hermitian metric g on X the Bott-Chern
and the Aeppli cohomology groups of X are, respectively, isomorphic to the kernel
of the following 4th-order elliptic self-adjoint differential operators

!
g
BC WD

#
@@
$ #
@@
$#

C
#
@@
$# #

@@
$
C
#
@

#
@
$ #
@

#
@
$#

C
#
@

#
@
$# #

@
#
@
$
C@#

@C@#@

and

!
g
A WD @@#C@@#C

#
@@
$# #

@@
$
C
#
@@
$ #
@@
$#

C
#
@@#

$# #
@@#

$
C
#
@@#

$ #
@@#

$#
:

Therefore these cohomologies are finite-dimensional vector spaces. Moreover,
differently from the Poincaré and Serre duality for the Dolbeault cohomology, the
Hermitian duality does not preserve these cohomologies; more precisely when a
Hermitian metric is fixed on X, the C-anti-linear Hodge-#-operator induces an
(un-natural) isomorphism between the Bott-Chern cohomology and the Aeppli
cohomology, namely

# W Hp;q
BC.X/ !! Hn"p;n"q

A .X/

is an isomorphism for any p; q 2 Z; this means that we do not have symmetry with
respect to the center in the Bott-Chern (and Aeppli) diamond. Therefore, we have
the following equalities: dimCH

p;q
BC.X/ D dimC H

q;p
BC.X/ D dimCH

n"q;n"p
A .X/ D

dimC H
n"p;n"q
A .X/, where the first one and the last one are due to the fact that the

conjugation preserves the Bott-Chern and the Aeppli cohomologies respectively
(giving a symmetry in the Bott-Chern diamond with respect to the central column).

Remark 1 Notice that, in general, the isomorphism H!;!
BC .X/ ' Ker!g

BC is of vector
spaces not algebras, indeed the wedge product of harmonic forms is not necessarily
harmonic. The study of Hermitian metrics whose space of Bott-Chern harmonic
forms has a structure of algebra has been developed in [9] and in [29] in terms of
geometric formality.
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By definition, the identity induces natural maps of (bi-)graded vector spaces
between the Bott-Chern, Dolbeault, de Rham, and Aeppli cohomologies:

Recall that a compact complex manifold is said to satisfy the @@-Lemma if the
natural map H!;!

BC .X/ !! H!;!
A .X/ is injective. This is equivalent to any of the above

maps being an isomorphism, see [18, Lemma 5.15]. Since any compact Kähler
manifold satisfies the @@-lemma the Bott-Chern and Aeppli cohomologies could
provide more informations on a compact complex manifold which does not admit
any Kähler metric. For this reason, from now on, we will implicitly assume that our
manifolds are not Kähler.

2.1 Inequalities on Compact Complex Manifolds

In this section we are mainly interested in discussing quantitative cohomological
informations on complex manifolds with the final aim of understanding which
integers can appear as dimensions of cohomology groups of complex manifolds.
In the compact Kähler case the Hodge decomposition Theorem states that the
Dolbeault cohomology groups give a decomposition of the de Rham cohomology,
inducing at the level of cohomology the decomposition of complex forms in . p; q/-
forms. This is no longer true if we drop the Kähler assumption. Frölicher in [19]
constructs a spectral sequence whose first page is isomorphic to the Dolbeault
cohomology and converging to the de Rham cohomology proving, consequently,
that on any compact complex manifold X there is a topological lower bound for the
Hodge numbers (the dimensions of the Dolbeault cohomology groups) in terms of
the Betti numbers (the dimensions of the de Rham cohomology groups), namely for
any k 2 Z,

X

pCqDk

dimC H
p;q
@
.X/ $ bk :

A Frölicher type inequality has been proven by Angella and Tomassini in [7]
taking into consideration the Bott-Chern and the Aeppli cohomology groups. For
clearness we report here the complete statement.
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Theorem 3 ([7, Theorem A, Theorem B]) Let X be a compact complex manifold.
Then, for any k 2 Z,

!k.X/ WD
X

pCqDk

!
dimCH

p;q
BC.X/C dimC H

p;q
A .X/

"
! 2 bk $ 0 :

Moreover, X satisfies the @@-Lemma if and only if, for any k 2 Z, there holds
!k.X/ D 0.

It provides a lower bound for the dimension of the Bott-Chern and Aeppli coho-
mologies in terms of the Betti numbers (the proof actually shows a lower bound also
in terms of the Hodge numbers), and it yields also a quantitative characterization of
the @@-Lemma. The proof of this Theorem is essentially algebraic and it is based
on Varouchas exact sequences [32]. The idea relies on the fact that the Dolbeault
cohomology is computed by looking at vertical arrows in a double complex and
its conjugate by looking at horizontal arrows. Nevertheless the Bott-Chern and
the Aeppli cohomologies compute the number of ingoing and outgoing corners
therefore, by combinatoric arguments, one gets that the dimensions of the Bott-
Chern and Aeppli cohomology groups are greater or equal than the sum of Hodge
numbers and their conjugates, which are greater or equal than the Betti numbers
by Frölicher. As a corollary one gets also the stability of the @@-lemma under small
deformations of the complex structure (see also [33] and [34] for different proofs). In
[8] a generalization to double complexes is developed, with applications to compact
symplectic manifolds.

Remark 2 Consider the special case when X is a compact complex surface, i.e.,
dimC X D 2. By duality the non-negative numbers !1 and !2 give all the
informations. Since Kählerness can be topologically characterized in terms of the
parity of the first Betti number b1, the Kähler condition is then equivalent to the
@@-lemma holding on X, leading to the equivalence: X is Kähler if and only if
!1 D !2 D 0.

Nevertheless we can be even more precise, indeed, it is proven in [30] that !1

vanishes on any compact complex surface (see [10] for explicit examples). This is
not true in higher dimension. Therefore the number!2 measure the non-Kählerness
of a compact surface:

Kähler ” !2 D 0:

In general, on surfaces Teleman in [30] proves that there are only two options for
!2: it is either 0 or 2. For a generalization in higher dimension see [11].

We have seen above that the Bott-Chern and the Aeppli numbers dominate
the Hodge numbers and then, by Frölicher the Betti numbers. In joint work with
Angella in [6] (see also [3]) we prove that they are also dominated by Hodge
numbers.
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Theorem 4 ([6, Theorem 2.1, Remark 2.2]) Let X be a compact complex
manifold of complex dimension n. Then, for any k 2 Z,

X

pCqDk

dimCH
p;q
A .X/

" minfkC 1; .2n ! k/C 1g %

0

@
X

pCqDk

dimCH
p;q
@
.X/C

X

pCqDkC1
dimC H

p;q
@
.X/

1

A

" .nC 1/ %

0

@
X

pCqDk

dimC H
p;q
@
.X/C

X

pCqDkC1
dimC H

p;q
@
.X/

1

A ;

and

X

pCqDk

dimC H
p;q
BC.X/

" minfkC 1; .2n ! k/C 1g %

0

@
X

pCqDk

dimC H
p;q
@
.X/C

X

pCqDk"1
dimC H

p;q
@
.X/

1

A

" .nC 1/ %

0

@
X

pCqDk

dimCH
p;q
@
.X/C

X

pCqDk"1
dimC H

p;q
@
.X/

1

A :

Proof The proof is essentially algebraic and, for example, the idea behind the first
inequality is obtained by thinking that the outgoing corners in a zig-zag contribute
to the Aeppli cohomology and the extremal points of a zig-zag to the Dolbeault
cohomology and/or its conjugate. Therefore, for any outgoing corners we have two
extremal points and the number of outgoing corners depends on the length of the
zig-zag. For a detailed proof we refer to [6] (see also [3]). ut
A similar result holds in case of double complexes under some additional hypothesis
of boundedness, leading to a similar result in symplectic geometry.

2.2 A Characterization of the @@-Lemma

By the above inequalities we then get that the difference
P

pCqDk

!
dimC H

p;q
BC.X/!

dimC H
p;q
A .X/

"
is bounded from both above and below by the Hodge numbers. In [6]

together with Angella we prove that there is also a characterization of the @@-Lemma
in terms of this quantity.
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Theorem 5 ([6, Theorem 3.1]) A compact complex manifold X satisfies the @@-
Lemma if and only if, for any k 2 Z, there holds

X

pCqDk

!
dimCH

p;q
BC.X/! dimC H

p;q
A .X/

"
D 0 :

Proof The first implication is trivial. For the other one notice that, roughly speaking,
the vanishing of the numbers

P
pCqDk

!
dimCH

p;q
BC.X/! dimC H

p;q
A .X/

"
means that

the number of ingoing corners is equal to the number of outgoing corners on any
diagonal of the same total degree; since in degree 0 we do not have ingoing corners
then we do not have any arrows in the picture of the double complex and therefore
the @@-lemma holds on X. Nevertheless the precise proof of Theorem 5 is based on
Varouchas exact sequences [32] but it is not algebraic, indeed conjugation is needed;
a similar result cannot be expected in the symplectic case. ut
Remark 3 This result means that on a compact complex manifold a non canon-
ical isomorphism between the Bott-Chern and the Aeppli cohomology forces all
the natural maps in the cohomology diagram to be isomorphisms and so these
cohomologies are not providing additional informations on the manifold. By the
Schweitzer duality between the Bott-Chern and the Aeppli cohomology [26, §2.c],
the above condition can be written just in terms of the Bott-Chern cohomology as
follows: for any k 2 Z, there holds

X

pCqDk

dimC H
p;q
BC.X/ D

X

pCqD2n"k

dimC H
p;q
BC.X/ ;

namely there is a symmetry in the Bott-Chern numbers. The study of this property
was initially motivated by the development of Sullivan theory of formality in the
context of Bott-Chern cohomology (see [9] and [29] for results in this direction).

Notice that there exist special classes of complex manifolds where the dimen-
sions of the Bott-Chern (and by duality Aeppli) cohomology groups can be
computed explicitly by means of suitable sub-complexes of the complex of forms
(see [4]) making this result concrete in studying the @@-lemma.

3 Symplectic Cohomologies

We consider now the symplectic case and we show that similar results hold in
this setting. Let .X; !/ be a compact symplectic manifold of dimension 2n, then
Tseng and Yau in [31] define a symplectic version of the Bott-Chern and the
Aeppli cohomology groups. Denoting with A!.X/ the space of differential forms
on X, the symplectic-?-Hodge operator (see [15]) ? W A!.X/ !! A2n"!.X/ is
defined as follows: given ˇ 2 Ak.X/, for any ˛ 2 Ak.X/ there holds ˛ ^ ?ˇ D
.!"1/k.˛; ˇ/ !n, where on simple elements .!"1/k.˛1^ : : :^˛k; ˇ1^ : : :^ˇk/ WD
det
!
!"1.˛i; ˇj/

"
i;j.
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The Brylinski co-differential is defined as

d" WD Œd;"# D d" !"d D .!1/kC1 ? d? ;

where" W A!.X/ !! A!"2.X/ is the adjoint of the Lefschetz operator L D ! ^ ! W
A!.X/ !! A!C2.X/. By definition d" W A!.X/ !! A!"1.X/ and the following
relations hold:

!
d"
"2 D 0 and dd" C d"d D 0.

Notice that the operator dd"Cd"d is not the analogue of the de-Rham Laplacian
in the classical Riemannian Hodge theory because it is not elliptic (it is always zero!)
and we should think at d" as the analogue of the operator dc in complex geometry
(actually they are deeply related once fixed a compatible triple, see [31] for more
details).

Then, for k 2 Z, (see [31]) the d"-cohomology groups are

Hk
d" .X/ WD

Ker.d"/ \ Ak.X/
Im d" \ Ak.X/

;

the symplectic Bott-Chern cohomology groups are

Hk
dCd" .X/ WD

Ker.dC d"/ \ Ak.X/
Im dd" \ Ak.X/

and the symplectic Aeppli cohomology groups are

Hk
dd" .X/ WD

Ker.dd"/ \ Ak.X/
.Im dC Im d"/\ Ak.X/

:

By construction they are invariant under symplectomorphisms and so they are good
symplectic cohomologies encoding global invariants. For similar definitions in the
locally conformal symplectic setting see [12].

Moreover these cohomology groups have been introduced because in symplectic
geometry the de Rham cohomology is not the appropriate one when talking about
Hodge theory.

Consider a compatible triple .!; J; g/ on X, namely

• J is a !-compatible almost-complex structure, i.e.,

– ! is positive on the J-complex lines, !.%; J%/ > 0;
– ! is J-invariant, !. J%; J % %/ D !.%; %%/;

• g is the corresponding Riemannian metric on X defined by g.%; %%/ WD !.%; J % %/.
Denotingwith # the standardHodge-operatorwith respect to the Riemannianmetric
g, there are canonical isomorphisms (see [31])

H k
d" .X/ WD ker!d" ' Hk

d" .X/ ;
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where !d" WD d"#d" C d"d"# is a second-order elliptic self-adjoint differential
operator and

H k
dCd" .X/ WD ker!dCd" ' Hk

dCd" .X/ ; H k
dd" .X/ WD ker!dd" ' Hk

dd" .X/ :

where !dCd" , !dd" are fourth-order elliptic self-adjoint differential operators
defined by

!dCd" WD .dd"/.dd"/! C .dd"/!.dd"/C d!d"d"!d C d"!dd!d" C d!d C d"!d";

!dd" WD .dd"/.dd"/! C .dd"/!.dd"/C dd"!d"d! C d"d!dd"! C dd! C d"d"!:

In particular, the symplectic cohomology groups are finite-dimensional vector
spaces on a compact symplectic manifold. For ] 2

˚
d"; dC d"; dd"

%
we set

h!
] WDW h!

] .X/ WD dimH!
] .X/ <1 when the manifold X is understood.

Similarly to the classical Hodge theory the differential forms closed both for
the operators d and d" were called by Brylinski symplectic harmonic [15]. The
existence of a symplectic harmonic form in each de Rham cohomology class
does not occur in general. As regards uniqueness there is no hope, indeed on any
symplectic manifold .X; !/ if ˛ 2 A1.X/ is symplectic-harmonic then ˛ C df is
still symplectic-harmonic, for any smooth function f on X, because d".˛ C df / D
d"df D d"df D 0 for degree reasons.

In particular, the following facts are equivalent on a compact symplectic manifold
.X2n; !/ (cf. [15, 16, 22, 23, 35])

• the hard-Lefschetz condition (HLC for short) holds, i.e., the maps

Lk W Hn"k
dR .X/ !! HnCk

dR .X/; 0 " k " n

are all isomorphisms;
• the Brylinski conjecture, i.e., the existence of a symplectic harmonic form in each

de Rham cohomology class;
• the dd"-lemma, i.e., every d"-closed, d-exact form is also dd"-exact;
• the natural maps induced by the identity H!

dCd".X/ !! H!
dR.X/ are injective;

• the natural maps induced by the identity H!
dCd".X/ !! H!

dR.X/ are surjective;
• the natural maps induced by the identity in the following diagram are isomor-

phisms
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In this sense H!
dCd" .X/ and H!

dd" .X/ represent more appropriate cohomologies
talking about existence and uniqueness of harmonic representatives on symplectic
manifolds.

Nevertheless, in general, on a symplectic manifold of dimension 2n the following
maps are all isomorphisms (see [31, Prop. 3.24])

in particular, it follows that hkdCd" D h2n"k
dCd" D hkdd" D h2n"k

dd" for all k D 0; : : : ; 2n.

Remark 4 Note that, as proved in [6] (see Theorem 5), on a compact complexmani-
fold the equality between the dimensions of the Bott-Chern cohomology groups
and the Aeppli cohomology groups characterizes the @@-lemma; nevertheless, the
“analogous” condition on a compact symplectic manifold X, namely h!

dCd".X/ D
h!
dd".X/, is always verified.

3.1 Inequalities on Compact Symplectic Manifolds

The proof of Theorem 4 is essentially algebraic and it can be generalized to double
complexeswith some hypothesis of boundedness. For the general statement we refer
to [6], here we consider the application to the symplectic cohomologies. Let X be
a compact manifold of dimension 2n endowed with a symplectic structure !. As in
[15, 16], we define the double complex associated to .A!.X/; d; d"/ as

!
B!1;!2 WD ^!1"!2X ˝ ˇ!2 ; d ˝ id; d" ˝ ˇ

"
;
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where ˇ is a generator of the infinite cyclic commutative group ˇZ. Note that, for
any q 2 Z, we have

Bp;q D f0g; p … fq; : : : ; qC 2ng ;

hence there exists a diagonal strip of width 2nC1 such that the double complex B!;!

has support in this strip. In the picture below we have an example for 2n D 4.

The Bott-Chern and Aeppli cohomologies of B!;! are related to the symplectic
cohomologies of X, H!

dCd".X/ ; H
!
dd".X/, more precisely,

H!1;!2
BC .B!;!/ D H!1"!2

dCd" .X/˝ ˇ!2 ; H!1;!2
A .B!;!/ D H!1"!2

dd" .X/˝ ˇ!2 :

The conjugate-Dolbeault and Dolbeault cohomologies of B!;! are both related to the
de Rham cohomology of X. With the same idea of the proof of Theorem 4 we can
prove the following

Theorem 6 ([6, Theorem 6.2]) Let X be a compact differentiable manifold of
dimension 2n endowed with a symplectic structure !. Then, for any k 2 Z=2Z,

X

hDkmod 2

dimR Hh
dCd".X/ " 2.2nC 1/ %

X

h2Z
dimR Hh

dR.XIR/ ;

and

X

hDkmod 2

dimR Hh
dd".X/ " 2.2nC 1/ %

X

h2Z
dimR Hh

dR.XIR/ :
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3.2 A Characterization of the Hard Lefschetz Condition

In [8] Angella and Tomassini, starting from a purely algebraic point of view,
introduce on a compact symplectic manifold .X2n; !/ the following non-negative
integers

!k WD hkdCd" C hkdd" ! 2bk $ 0; k 2 Z;

proving that, similarly to the complex case, their vanishing characterizes the dd"-
lemma which is equivalent to the validity of the Hard-Lefschetz condition. In this
sense these numbers measure the HLC-degree of a symplectic manifold, as their
analogue in the complex case do (cf. [7]).

Now, as already observed by Chan and Suen in [17], using the equality
dimH!

dCd".X/ D dimH!
dd".X/ proved in [31], we get

!k D 2.hkdCd" ! bk/; k 2 ZI

therefore we can simplify them as in [28], considering just the difference between
the dimensions of the Bott-Chern and the de Rham cohomology groups. We define

Q!k WD hkdCd" ! bk; k 2 Z:

Notice that a similar simplification can not be done in the complex case (cf. [26]).
We put in evidence that, by duality, Q!k D Q!2n"k, k D 0; : : : 2n, so for a compact
symplectic manifold .X; !/ of dimension 2n we will refer to Q!k, k D 0 : : : n, as the
non-HLC-degrees of X. Note that Q!0 D 0.

As a consequence of the positivity of !k, for any k, we have that for all k D
1; : : : ; n

bk " hkdCd"

on a compact symplectic 2n-dimensional manifold.
Moreover the equalities

bk D hkdCd"; 8k D 1; : : : ; n;

hold on a compact symplectic 2n-dimensional manifold if and only if it satisfies the
Hard-Lefschetz condition; namely the equality b! D h!

dCd" ensures the bijectivity
of the natural maps H!

dCd".X/ !! H!
dR.X/, and hence the dd

"-lemma.
This considerations can be inserted in the more general setting of generalized

complex manifolds, see [17] for more details.
Similarly to the complex case where !2 characterizes the Kählerianity of a

compact complex surface, if 2n D 4 we want to show that the only degree which
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characterizes the Hard Lefschetz Condition is Q!2. Notice that, differently to the
complex case, in any dimension we have the following

Theorem 7 ([28, Theorem 4.3]) Let .X2n; !/ be a compact symplectic manifold,
then the natural map induced by the identity

H1
dCd".X/ !! H1

dR.X/

is an isomorphism. In particular,

Q!1 D 0:

Proof For the sake of completeness we briefly recall here the proof. For the
surjectivity, if ˛ is a d-closed 1-form, then it is also d"-closed, indeed

d"˛ D Œd;"# ˛ D !"d˛ D 0:

We need to prove the injectivity. Let a D Œ˛# 2 H1
dCd".X/ be such that a D 0 in

H1
dR.X/, namely ˛ D df for some smooth function f on X. Considering the Hodge

decomposition of f with respect to the d"-cohomology (cf. [31]) we get f D cCd"ˇ
with c constant and ˇ differential 1-form. Hence

˛ D df D d.cC d"ˇ/ D dd"ˇ;

i.e., Œ˛# D 0 2 H1
dCd".X/.

As a consequence, b1 D h1dCd" , implying Q!1 D h1dCd" ! b1 D 0 and concluding
the proof. ut
The analog result for the complex Bott-Chern cohomology is not true, see e.g.,
[4, Remark 3.6]. The previous Theorem lead us to the following quantitative
characterization of the Hard Lefschetz condition in dimension 4.

Theorem 8 ([28, Theorem 4.5]) Let .X4; !/ be a compact symplectic 4-manifold,
then it satisfies

HLC ” Q!2 D 0 ” b2 D h2dCd":

Therefore in 4-dimensions it is possible to study the Hard Lefschetz condition by
studying the dependence of the space H2

dCd".X/ on the symplectic structure.

Remark 5 As shown in [30] on a compact complex surface !2 2 f0; 2g; in [28]
with Tomassini we provide an explicit example of a compact symplectic 4-manifold
with !2 … f0; 2g, or equivalently Q!2 … f0; 1g, showing hence a different behavior
in the symplectic case. More precisely we compute the non-HLC degree Q!2 when
X is a compact 4-dimensional manifold diffeomorphic to a solvmanifold % nG (i.e.,
the compact quotient of a connected simply-connected solvable Lie group G by a



246 N. Tardini

discrete cocompact subgroup % ) admitting a left-invariant symplectic structure; for
a partial computation cfr. [5, Table 2].

In detail, if X D % nG is a compact solvmanifold of dimension 4 with ! left-
invariant symplectic structure, then, according to g D Lie.G/, we have the following
cases

a) if g D g3;1 ˚ g1, then Q!2 D 1;
b) if g D g1 ˚ g"1

3;4, then Q!2 D 0;
c) if g D g4;1, then Q!2 D 2.

See [28] for the computations.
Notice that, by applying Theorem 6, with an easy computation we obtain the

following (quite large) inequalities for a general compact symplectic 4-manifold
.X4; !/,

b2 " h2dCd" " 10 b2 C 20 b1 C 18

and

0 " Q!2 " 9 b2 C 20 b1 C 18:
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