536 research outputs found
Charged bottomonium-like structures and
The observation of two charged bottomonium-like structures and
has stimulated extensive studies of the properties of
and . In this talk, we briefly introduce the research status of
and combined with our theoretical progress.Comment: 6 pages, 1 table, 5 figures. Plenary talk given at the international
conference The Fifth Asia-Pacific Conference on Few-Body Systems in Physics
2011 (APFB2011), Seoul, Republic of Korea, 22-26 August 201
Few-Body Systems Composed of Heavy Quarks
Within the past ten years many new hadrons states were observed
experimentally, some of which do not fit into the conventional quark model. I
will talk about the few-body systems composed of heavy quarks, including the
charmonium-like states and some loosely bound states.Comment: Plenary talk at the 20th International IUPAP Conference on Few-Body
Problems in Physics, to appear in Few Body Systems (2013
Spin-Peierls transition in an anisotropic two-dimensional XY model
The two-dimensional Jordan-Wigner transformation is used to investigate the
zero temperature spin-Peierls transition for an anisotropic two-dimensional XY
model in adiabatic limit. The phase diagram between the dimerized (D) state and
uniform (U) state is shown in the parameter space of dimensionless interchain
coupling and spin-lattice coupling . It is found
that the spin-lattice coupling must exceed some critical value
in order to reach the D phase for any finite . The dependence of on
is given by for and the transition between U and D
phase is of first-order for at least .Comment: 2 eps figures, considerable revisions were mad
LRRK2 A419V is not associated with Parkinson's disease in different Chinese populations
10.1371/journal.pone.0036123PLoS ONE77
Thermodynamic processes on a semiconductor surface during in-situ multi-beam laser interference patterning
Laser interference has been widely used to produce one-dimensional gratings and more recently has shown great potential for two-dimensional patterning. In this study, the authors examine by simulation, its application to in-situ patterning during materials growth. To understand the potential, it is important to study the surface processes resulting from the laser-matter interaction which have a key influence on the resulting growth mechanisms. In this work, the intensity distribution and the laser-semiconductor interaction resulting from four-beam interference patterns are analysed by numerical simulations. In particular, the authors derive the time and spatially dependent thermal distribution along with the thermal-induced desorption and surface diffusion. The results provide a crucial understanding of the light-induced thermal profile and show that the surface temperature and the surface adatom kinetics can be controlled by multi-beam pulsed laser interference patterning due to photothermal reactions. The approach has potential as an in-situ technique for the fast and precise nanostructuring of semiconductor material surfaces
Possible Interpretations of If It Really Exists
We analyze various possible interpretations of the narrow state
observed by SELEX Collaboration recently, which lies above
threshold and has abnormal decay pattern. These interpretations include: (1)
several versions of tetraquarks; (2) conventional meson such as the
first radial excitation of with abnormally large SU(3) symmetry
breaking; (3) conventional meson with abnormally large
coupling; (4) heavy hybrid meson. We discuss the physical implications of each
interpretation. For example, if the existence of is confirmed
as the first radial excitation of by other experiments, it will be
helpful to look for (1) its SU(3) flavor partners ; (2) its
B-meson analogues ; (3) S-wave two pion
decay modes
Thermal conductivity and microhardness of MWCNTs/copper nanocomposites
Conference Name:2011 International Symposium on Advanced Packaging Materials, APM 2011. Conference Address: Xiamen, China. Time:October 25, 2011 - October 28, 2011.The effects of dispersion states of carbon nanotubes on thermal conductivity and Micro-hardness of Multi-walled carbon nanotube (MWCNT) reinforced copper nanocomposites were investigated. The nanocomposites were fabricated in a novel method. It involves the synthesis of MWCNT-implanted copper composite spheres and the preparation of the MWCNT/copper bulk materials using vacuum hot pressing and hot rolling. The thermal conductivity of the composites with different concentration of MWCNTs were measured. Although the coefficient of thermal conductivity decreases with the increase of the MWCNT content, it is still high enough to be used as electronic packaging materials even the concentration of MWCNTS in the composite is up to 5 wt%. Furthermore, the microhardness of the nanocomposites are much higher than that of pure copper, which is ascribed to the good dispersion of the MWCNTs in matrix. ? 2011 IEEE
Polaronic Signatures in Mid-Infrared Spectra: Prediction for LaMnO3 and CaMnO3
Hole-doped LaMnO3 and electron-doped CaMnO3 form self-trapped electronic
states. The spectra of these states have been calculated using a two orbital
(Mn eg Jahn-Teller) model, from which the non-adiabatic optical conductivity
spectra are obtained. In both cases the optical spectrum contains weight in the
gap region, whose observation will indicate the self-trapped nature of the
carrier states. The predicted spectra are proportional to the concentration of
the doped carriers in the dilute regime, with coefficients calculated with no
further model parameters.Comment: 6 pages with 3 figures imbedde
Investigation of the Jahn-Teller Transition in TiF3 using Density Functional Theory
We use first principles density functional theory to calculate electronic and
magnetic properties of TiF3 using the full potential linearized augmented plane
wave method. The LDA approximation predicts a fully saturated ferromagnetic
metal and finds degenerate energy minima for high and low symmetry structures.
The experimentally observed Jahn-Teller phase transition at Tc=370K can not be
driven by the electron-phonon interaction alone, which is usually described
accurately by LDA.
Electron correlations beyond LDA are essential to lift the degeneracy of the
singly occupied Ti t2g orbital. Although the on-site Coulomb correlations are
important, the direction of the t2g-level splitting is determined by the
dipole-dipole interactions. The LDA+U functional predicts an aniferromagnetic
insulator with an orbitally ordered ground state. The input parameters U=8.1 eV
and J=0.9 eV for the Ti 3d orbital were found by varying the total charge on
the TiF ion using the molecular NRLMOL code. We estimate the
Heisenberg exchange constant for spin-1/2 on a cubic lattice to be
approximately 24 K. The symmetry lowering energy in LDA+U is about 900 K per
TiF3 formula unit.Comment: 7 pages, 9 figures, to appear in Phys. Rev.
- …