490 research outputs found

    Singular value decomposition on SIMD hypercube and shuffle-exchange computers

    Get PDF
    AbstractThis paper reports several parallel singular value decomposition (SVD) algorithms on the hypercube and shuffle-exchange SIMD computers. Unlike previously published hypercube SVD algorithms which map a column pair of a matrix onto a processor, the algorithms presented in this paper map a matrix column pair onto a column of processors. In this way, a further reduction in time complexity is achieved. The paper also introduces the concept of two-dimensional shuffle-exchange networks, and corresponding SVD algorithms for one-dimensional and two-dimensional shuffle-exchange computers are developed

    Demonstration of Feed-Forward Control for Linear Optics Quantum Computation

    Get PDF
    One of the main requirements in linear optics quantum computing is the ability to perform single-qubit operations that are controlled by classical information fed forward from the output of single photon detectors. These operations correspond to pre-determined combinations of phase corrections and bit-flips that are applied to the post-selected output modes of non-deterministic quantum logic devices. Corrections of this kind are required in order to obtain the correct logical output for certain detection events, and their use can increase the overall success probability of the devices. In this paper, we report on the experimental demonstration of the use of this type of feed-forward system to increase the probability of success of a simple non-deterministic quantum logic operation from approximately 1/4 to 1/2. This logic operation involves the use of one target qubit and one ancilla qubit which, in this experiment, are derived from a parametric down-conversion photon pair. Classical information describing the detection of the ancilla photon is fed-forward in real-time and used to alter the quantum state of the output photon. A fiber optic delay line is used to store the output photon until a polarization-dependent phase shift can be applied using a high speed Pockels cell

    Analysis of the dynamic changes in the soft palate and uvula in obstructive sleep apnea-hypopnea using ultrafast magnetic resonance imaging

    No full text
    Apnea and the respiratory cycle are dynamic processes in obstructive sleep apnea-hypopnea (OSAH), which occur only during sleep. Our study aimed to observe the dynamic changes in the soft palate and the uvula during wakefulness and sleep using ultrafast magnetic resonance imaging (UMRI) to provide reference data for the pathogenesis and treatment of OSAH. The dynamic changes in the soft palate and uvular tip of 15 male patients (average age: 50.43 ± 9.82 years) with OSAH were evaluated using UMRI of the upper airway while asleep and awake after 1 night of sleep deprivation. A series of midline sagittal images of the upper airway were obtained. The distance from the center of the soft palate to the x-axis (an extended line from the anterior nasal spine to the posterior nasal spine), from the uvular tip to the x-axis, from the center of the soft palate to the y-axis (a perpendicular line from the center of the pituitary to the x-axis), and from the uvular tip to the y-axis (designated as PX, UX, PY, and UY, respectively) were measured during sleep and wakefulness. The minimum PX, PY, UX, and UY were shorter during sleep than during wakefulness, whereas the maxima were longer during sleep (P < 0.01), the differences between the maximum and minimum PX, PY, UX, and UY were larger during sleep (P < 0.01). The upward, downward, forward, and backward ranges of movement of the soft palate and the uvular tip were larger during sleep in OSAH patients. This increased compliance may trigger each airway obstructive event

    A coupled peridynamics and DEM-IB-CLBM method for sand erosion prediction in a viscous fluid

    Get PDF
    In this paper the peridynamics theory is integrated with a DEM-IB-CLBM (Discrete Element-Immersed Boundary-Cascaded Lattice Boltzmann Method) framework to enable fully-resolved simulations of sand erosion in viscous fluids. The crack and damage of the material walls are modelled with the peridynamics theory, the no-slip boundary condition is implemented on the surface of particles using an Immersed Boundary Method (IBM) and particle collisions are accurately resolved using a Discrete Element Method. The method is validated by comparing the trajectory of a particle colliding with a wall in a viscous fluid with the previous results provided in the literature. The impact of the generated craters due to the collisions on the vortex field and also the impact of collision angle on the material damage are investigated

    The Role of Translation Initiation Regulation in Haematopoiesis

    Get PDF
    Organisation of RNAs into functional subgroups that are translated in response to extrinsic and intrinsic factors underlines a relatively unexplored gene expression modulation that drives cell fate in the same manner as regulation of the transcriptome by transcription factors. Recent studies on the molecular mechanisms of inflammatory responses and haematological disorders indicate clearly that the regulation of mRNA translation at the level of translation initiation, mRNA stability, and protein isoform synthesis is implicated in the tight regulation of gene expression. This paper outlines how these posttranscriptional control mechanisms, including control at the level of translation initiation factors and the role of RNA binding proteins, affect hematopoiesis. The clinical relevance of these mechanisms in haematological disorders indicates clearly the potential therapeutic implications and the need of molecular tools that allow measurement at the level of translational control. Although the importance of miRNAs in translation control is well recognised and studied extensively, this paper will exclude detailed account of this level of control

    Two qubits of a W state violate Bell's inequality beyond Cirel'son's bound

    Full text link
    It is shown that the correlations between two qubits selected from a trio prepared in a W state violate the Clauser-Horne-Shimony-Holt inequality more than the correlations between two qubits in any quantum state. Such a violation beyond Cirel'son's bound is smaller than the one achieved by two qubits selected from a trio in a Greenberger-Horne-Zeilinger state [A. Cabello, Phys. Rev. Lett. 88, 060403 (2002)]. However, it has the advantage that all local observers can know from their own measurements whether their qubits belongs or not to the selected pair.Comment: REVTeX4, 5 page

    Femtosecond Time-Bin Entangled Qubits for Quantum Communication

    Full text link
    We create pairs of non-degenerate time-bin entangled photons at telecom wavelengths with ultra-short pump pulses. Entanglement is shown by performing Bell kind tests of the Franson type with visibilities of up to 91%. As time-bin entanglement can easily be protected from decoherence as encountered in optical fibers, this experiment opens the road for complex quantum communication protocols over long distances. We also investigate the creation of more than one photon pair in a laser pulse and present a simple tool to quantify the probability of such events to happen.Comment: 6 pages, 7 figure

    Experiment towards continuous-variable entanglement swapping: Highly correlated four-partite quantum state

    Get PDF
    We present a protocol for performing entanglement swapping with intense pulsed beams. In a first step, the generation of amplitude correlations between two systems that have never interacted directly is demonstrated. This is verified in direct detection with electronic modulation of the detected photocurrents. The measured correlations are better than expected from a classical reconstruction scheme. In the entanglement swapping process, a four--partite entangled state is generated. We prove experimentally that the amplitudes of the four optical modes are quantum correlated 3 dB below shot noise, which is due to the potential four--party entanglement.Comment: 9 pages, 10 figures, update of references 9 and 10; minor inconsistency in notation removed; format for units in the figures change

    Reliability of the beamsplitter based Bell-state measurement

    Full text link
    A linear 50/50 beamsplitter, together with a coincidence measurement, has been widely used in quantum optical experiments, such as teleportation, dense coding, etc., for interferometrically distinguishing, measuring, or projecting onto one of the four two-photon polarization Bell-states ψ()>|\psi^{(-)}>. In this paper, we demonstrate that the coincidence measurement at the output of a beamsplitter cannot be used as an absolute identifier of the input state ψ()>|\psi^{(-)}> nor as an indication that the input photons have projected to the ψ()>|\psi^{(-)}> state.Comment: 4 pages, two-colum
    corecore