119 research outputs found

    Application of simulation technique on debris flow hazard zone delineation: a case study in the Daniao tribe, Eastern Taiwan

    Get PDF
    Typhoon Morakot struck Taiwan in August 2009 and induced considerable disasters, including large-scale landslides and debris flows. One of these debris flows was experienced by the Daniao tribe in Taitung, Eastern Taiwan. The volume was in excess of 500 000 m(3), which was substantially larger than the original design mitigation capacity. This study considered large-scale debris flow simulations in various volumes at the same area by using the DEBRIS-2D numerical program. The program uses the generalized Julien and Lan (1991) rheological model to simulate debris flows. In this paper, the sensitivity factor considered on the debris flow spreading is the amount of the debris flow initial volume. These simulated results in various amounts of debris flow initial volume demonstrated that maximal depths of debris flows were almost deposited in the same area, and also revealed that a 20% variation in estimating the amount of total volume at this particular site results in a 2.75% variation on the final front position. Because of the limited watershed terrain, the hazard zones of debris flows were not expanded. Therefore, the amount of the debris flow initial volume was not sensitive

    Human macrophages differentiated in the presence of vitamin D3 restrict dengue virus infection and innate responses by downregulating mannose receptor expression

    Get PDF
    ABSTARCT: Severe dengue disease is associated with high viral loads and overproduction of pro-inflammatory cytokines, suggesting impairment in the control of dengue virus (DENV) and the mechanisms that regulate cytokine production. Vitamin D3 has been described as an important modulator of immune responses to several pathogens. Interestingly, increasing evidence has associated vitamin D with decreased DENV infection and early disease recovery, yet the molecular mechanisms whereby vitamin D reduces DENV infection are not well understood. METHODS AND PRINCIPAL FINDINGS: Macrophages represent important cell targets for DENV replication and consequently, they are key drivers of dengue disease. In this study we evaluated the effect of vitamin D3 on the differentiation of monocyte-derived macrophages (MDM) and their susceptibility and cytokine response to DENV. Our data demonstrate that MDM differentiated in the presence of vitamin D3 (D3-MDM) restrict DENV infection and moderate the classical inflammatory cytokine response. Mechanistically, vitamin D3-driven differentiation led to reduced surface expression of C-type lectins including the mannose receptor (MR, CD206) that is known to act as primary receptor for DENV attachment on macrophages and to trigger of immune signaling. Consequently, DENV bound less efficiently to vitamin D3-differentiated macrophages, leading to lower infection. Interestingly, IL-4 enhanced infection was reduced in D3-MDM by restriction of MR expression. Moreover, we detected moderate secretion of TNF-α, IL-1β, and IL-10 in D3-MDM, likely due to less MR engagement during DENV infection. CONCLUSIONS/SIGNIFICANCE: Our findings reveal a molecular mechanism by which vitamin D counteracts DENV infection and progression of severe disease, and indicates its potential relevance as a preventive or therapeutic candidate

    Female chromosome X mosaicism is age-related and preferentially affects the inactivated X chromosome

    Get PDF
    To investigate large structural clonal mosaicism of chromosome X, we analysed the SNP microarray intensity data of 38,303 women from cancer genome-wide association studies (20,878 cases and 17,425 controls) and detected 124 mosaic X events42Mb in 97 (0.25%) women. Here we show rates for X-chromosome mosaicism are four times higher than mean autosomal rates; X mosaic events more often include the entire chromosome and participants with X events more likely harbour autosomal mosaic events. X mosaicism frequency increases with age (0.11% in 50-year olds; 0.45% in 75-year olds), as reported for Y and autosomes. Methylation array analyses of 33 women with X mosaicism indicate events preferentially involve the inactive X chromosome. Our results provide further evidence that the sex chromosomes undergo mosaic events more frequently than autosomes, which could have implications for understanding the underlying mechanisms of mosaic events and their possible contribution to risk for chronic diseases

    Shunted optimal vibration energy harvesting control of discontinuous smart beams

    No full text
    This paper presents an adaptive dynamic analysis of discontinuous smart beam energy harvester systems using a shunt vibration control. The smart structural systems, connected with the shunt and harvesting circuit interfaces, consist of the three types of non-homogeneous structural combinations with different piezoelectric materials. The constitutive coupled dynamic equations with full variational parameters are reduced using the charge type-based Hamiltonian mechanics and the Ritz method-based weak-form analytical approach. Unlike the conventional techniques, this study elaborates the appearance of the two resonances with a wider shift on a specific range of the optimal power output frequencies, using only the first mode of the smart structural systems. Moreover, the two-equal peak of the optimal response may potentially occur to appear not only at the first resonance, but also at the second resonance. This intrinsically represents strong electromechanical effect, depending on the properties and thicknesses of piezoelectric materials and the circuit parameters. The accuracy of the theoretical method is tested using the iterative computational process of the optimal frequency response with full coupled electromechanical system parameters. Further details of the parametric studies are discussed to show the prediction of the energy harvesting with the ability of tuning an adaptive frequency response

    Broadband piezoelectric energy harvesting induced by mixed resonant modes under magnetic plucking

    No full text
    A piezoelectric device connected to the standard interface circuit is proposed for harvesting energy by inducing the mixed resonant modes of vibration under the two-point rotary magnetic plucking. It consists of a piezoelectric cantilever beam attached to a tip magnet and a second magnet placed on the middle of the beam. Both magnets are excited by another two magnets aligned radically and attached to a rotating host. The two impulsive forces from these magnets are made in opposite directions for the ease of inducing the second resonant mode. As a result, the harvester device exhibits the pronounced broadband energy harvesting which can not be achieved by the conventional design based on the one-point magnetic plucking for exciting a single resonant mode. The analysis is based on the Fourier decomposition of magnetic impulsive forces for realizing the phenomenon of frequency up-conversion. In addition, the estimate of harvested power is analytically derived based on using the equivalent load impedance which is originally proposed for analyzing harvester arrays. The result shows that the theoretical prediction agrees well with the experimental observation. Further, the rotary frequency response exhibits the remarkable feature of broadband energy harvesting as the output power is increased up to 2500% higher than that in the off-resonance region of the setup allowing plucking only on the tip magnet
    corecore