13 research outputs found

    Comparison of Radiation Damage in Lead Tungstate Crystals under Pion and Gamma Irradiation

    Full text link
    Studies of the radiation hardness of lead tungstate crystals produced by the Bogoroditsk Techno-Chemical Plant in Russia and the Shanghai Institute of Ceramics in China have been carried out at IHEP, Protvino. The crystals were irradiated by a 40-GeV pion beam. After full recovery, the same crystals were irradiated using a 137Cs^{137}Cs γ\gamma-ray source. The dose rate profiles along the crystal length were observed to be quite similar. We compare the effects of the two types of radiation on the crystals light output.Comment: 10 pages, 8 figures, Latex 2e, 28.04.04 - minor grammatical change

    Correlation of Beam Electron and LED Signal Losses under Irradiation and Long-term Recovery of Lead Tungstate Crystals

    Full text link
    Radiation damage in lead tungstate crystals reduces their transparency. The calibration that relates the amount of light detected in such crystals to incident energy of photons or electrons is of paramount importance to maintaining the energy resolution the detection system. We report on tests of lead tungstate crystals, read out by photomultiplier tubes, exposed to irradiation by monoenergetic electron or pion beams. The beam electrons themselves were used to measure the scintillation light output, and a blue light emitting diode (LED) was used to track variations of crystals transparency. We report on the correlation of the LED measurement with radiation damage by the beams and also show that it can accurately monitor the crystals recovery from such damage.Comment: 9 pages, 6 figures, LaTeX2

    LED Monitoring System for the BTeV Lead Tungstate Crystal Calorimeter Prototype

    Full text link
    We report on the performance of a monitoring system for a prototype calorimeter for the BTeV experiment that uses Lead Tungstate crystals coupled with photomultiplier tubes. The tests were carried out at the 70 GeV accelerator complex at Protvino, Russia.Comment: 12 pages, 8 figures, LaTeX2e, revised versio

    Design and performance of LED calibration system prototype for the lead tungstate crystal calorimeter

    Full text link
    A highly stable monitoring system based on blue and red light emitting diodes coupled to a distribution network comprised of optical fibers has been developed for an electromagnetic calorimeter that uses lead tungstate crystals readout with photomultiplier tubes. We report of the system prototype design and on the results of laboratory tests. Stability better than 0.1% (r.m.s.) has been achieved during one week of prototype operation.Comment: 10 pages, 6 figures, LaTeX2

    Measurement of the Bottom contribution to non-photonic electron production in p+pp+p collisions at s\sqrt{s} =200 GeV

    Get PDF
    The contribution of BB meson decays to non-photonic electrons, which are mainly produced by the semi-leptonic decays of heavy flavor mesons, in p+pp+p collisions at s=\sqrt{s} = 200 GeV has been measured using azimuthal correlations between non-photonic electrons and hadrons. The extracted BB decay contribution is approximately 50% at a transverse momentum of pT5p_{T} \geq 5 GeV/cc. These measurements constrain the nuclear modification factor for electrons from BB and DD meson decays. The result indicates that BB meson production in heavy ion collisions is also suppressed at high pTp_{T}.Comment: 6 pages, 4 figures, accepted by PR

    Event-plane-dependent Dihadron Correlations With Harmonic Vn Subtraction In Au + Au Collisions At S Nn =200 Gev

    Get PDF
    STAR measurements of dihadron azimuthal correlations (Δφ) are reported in midcentral (20-60%) Au+Au collisions at sNN=200 GeV as a function of the trigger particle's azimuthal angle relative to the event plane, φs=|φt-ψEP|. The elliptic (v2), triangular (v3), and quadratic (v4) flow harmonic backgrounds are subtracted using the zero yield at minimum (ZYAM) method. The results are compared to minimum-bias d+Au collisions. It is found that a finite near-side (|Δφ|π/2) correlation shows a modification from d+Au data, varying with φs. The modification may be a consequence of path-length-dependent jet quenching and may lead to a better understanding of high-density QCD. © 2014 American Physical Society.894DOE; U.S. Department of EnergyArsene, I., (2005) Nucl. Phys. A, 757, p. 1. , (BRAHMS Collaboration), () NUPABL 0375-9474 10.1016/j.nuclphysa.2005.02. 130;Back, B.B., (2005) Nucl. Phys. A, 757, p. 28. , (PHOBOS Collaboration), () NUPABL 0375-9474 10.1016/j.nuclphysa.2005.03. 084;Adams, J., (2005) Nucl. Phys. A, 757, p. 102. , (STAR Collaboration), () NUPABL 0375-9474 10.1016/j.nuclphysa.2005.03. 085;Adcox, K., (2005) Nucl. Phys. A, 757, p. 184. , (PHENIX Collaboration),. NUPABL 0375-9474 10.1016/j.nuclphysa.2005.03.086Heinz, U., Kolb, P.F., (2002) Nucl. Phys. A, 702, p. 269. , NUPABL 0375-9474 10.1016/S0375-9474(02)00714-5Wang, X.-N., Gyulassy, M., (1992) Phys. Rev. Lett., 68, p. 1480. , PRLTAO 0031-9007 10.1103/PhysRevLett.68.1480Adler, S., (2003) Phys. Rev. Lett., 91, p. 072301. , (PHENIX Collaboration), () PRLTAO 0031-9007 10.1103/PhysRevLett.91. 072301;Adams, J., (2003) Phys. Rev. Lett., 91, p. 072304. , (STAR Collaboration), () PRLTAO 0031-9007 10.1103/PhysRevLett.91.072304;Adler, C., (2003) Phys. Rev. Lett., 90, p. 082302. , (STAR Collaboration),. PRLTAO 0031-9007 10.1103/PhysRevLett.90.082302Adams, J., (2005) Phys. Rev. Lett., 95, p. 152301. , (STAR Collaboration), () PRLTAO 0031-9007 10.1103/PhysRevLett.95.152301;Aggarwal, M.M., (2010) Phys. Rev. C, 82, p. 024912. , (STAR Collaboration),. PRVCAN 0556-2813 10.1103/PhysRevC.82.024912Adams, J., (2004) Phys. Rev. Lett., 93, p. 252301. , (STAR Collaboration),. PRLTAO 0031-9007 10.1103/PhysRevLett.93.252301Poskanzer, A.M., Voloshin, S.A., (1998) Phys. Rev. C, 58, p. 1671. , PRVCAN 0556-2813 10.1103/PhysRevC.58.1671Alver, B., (2008) Phys. Rev. C, 77, p. 014906. , PRVCAN 0556-2813 10.1103/PhysRevC.77.014906Feng, A., (2008), Ph.D. thesis, Institute of Particle Physics, CCNU, (unpublished);Konzer, J., (2013), Ph.D. thesis, Purdue University, (unpublished)Agakishiev, H., (STAR Collaboration), arXiv:1010.0690Ackermann, K.H., (2003) Nucl. Instrum. Meth., A499, p. 624. , (STAR Collaboration),. NIMAER 0168-9002 10.1016/S0168-9002(02)01960-5Ackermann, K.H., (1999) Nucl. Phys. A, 661, p. 681. , (STAR Collaboration),. NUPABL 0375-9474 10.1016/S0375-9474(99)85117-3Adams, J., (2004) Phys. Rev. Lett., 92, p. 112301. , (STAR Collaboration),. PRLTAO 0031-9007 10.1103/PhysRevLett.92.112301Borghini, N., Dinh, P.M., Ollitrault, J.Y., (2000) Phys. Rev. C, 62, p. 034902. , PRVCAN 0556-2813 10.1103/PhysRevC.62.034902Adams, J., (2005) Phys. Rev. C, 72, p. 014904. , (STAR Collaboration),. PRVCAN 0556-2813 10.1103/PhysRevC.72.014904Abelev, B.I., (2009) Phys. Rev. C, 79, p. 034909. , (STAR Collaboration),. PRVCAN 0556-2813 10.1103/PhysRevC.79.034909Bielcikova, J., (2004) Phys. Rev C, 69, p. 021901. , (R) () PRVCAN 0556-2813 10.1103/PhysRevC.69.021901;Konzer, J., Wang, F., (2009) Nucl. Instrum. Meth., A606, p. 713. , NIMAER 0168-9002 10.1016/j.nima.2009.05.011Mishra, A.P., (2008) Phys. Rev. C, 77, p. 064902. , PRVCAN 0556-2813 10.1103/PhysRevC.77.064902;Alver, B., Roland, G., (2010) Phys. Rev. C, 81, p. 054905. , PRVCAN 0556-2813 10.1103/PhysRevC.81.054905Alver, B., Roland, G., (2010) Phys. Rev. C, 82, p. 039903. , 0556-2813 10.1103/PhysRevC.82.039903Xu, J., Ko, C.M., (2011) Phys. Rev. C, 84, p. 014903. , PRVCAN 0556-2813 10.1103/PhysRevC.84.014903Petersen, H., (2010) Phys. Rev. C, 82, p. 041901. , PRVCAN 0556-2813 10.1103/PhysRevC.82.041901Takahashi, J., (2009) Phys. Rev. Lett., 103, p. 242301. , PRLTAO 0031-9007 10.1103/PhysRevLett.103.242301;Andrade, R.P.G., (2012) Phys. Lett. B, 712, p. 226. , PYLBAJ 0370-2693 10.1016/j.physletb.2012.04.044;Qian, W.L., (2013) Phys. Rev. C, 87, p. 014904. , PRVCAN 0556-2813 10.1103/PhysRevC.87.014904Schenke, B., Jeon, S., Gale, C., (2011) Phys. Rev. Lett., 106, p. 042301. , PRLTAO 0031-9007 10.1103/PhysRevLett.106.042301;Qiu, Z., Heinz, U.W., (2011) Phys. Rev. C, 84, p. 024911. , PRVCAN 0556-2813 10.1103/PhysRevC.84.024911;Song, H., (2011) Phys. Rev. Lett., 106, p. 192301. , PRLTAO 0031-9007 10.1103/PhysRevLett.106.192301;Schenke, B., Jeon, S., Gale, C., (2012) Phys. Rev. C, 85, p. 024901. , PRVCAN 0556-2813 10.1103/PhysRevC.85.024901;Schenke, B., Tribedy, P., Venugopalan, R., (2012) Phys. Rev. Lett., 108, p. 252301. , PRLTAO 0031-9007 10.1103/PhysRevLett.108.252301Adare, A., (2011) Phys. Rev. Lett., 107, p. 252301. , (PHENIX Collaboration),. PRLTAO 0031-9007 10.1103/PhysRevLett.107.252301Adamczyk, L., (2013) Phys. Rev. C, 88, p. 014904. , (STAR Collaboration),. PRVCAN 0556-2813 10.1103/PhysRevC.88.014904Abelev, B.I., (2008) Phys. Rev. Lett., 101, p. 252301. , (STAR Collaboration),. PRLTAO 0031-9007 10.1103/PhysRevLett.101.252301Teaney, D., Yan, L., (2011) Phys. Rev. C, 83, p. 064904. , PRVCAN 0556-2813 10.1103/PhysRevC.83.064904Pandit, Y., (2013) J. Phys. Conf. Ser., 446, p. 012012. , (STAR Collaboration),. 1742-6596 10.1088/1742-6596/446/1/012012Ajitanand, N.N., (2005) Phys. Rev. C, 72, p. 011902. , PRVCAN 0556-2813 10.1103/PhysRevC.72.011902Agakishiev, G., (2012) Phys. Rev. C, 86, p. 064902. , (STAR Collaboration),. PRVCAN 0556-2813 10.1103/PhysRevC.86.064902Adler, C., (2002) Phys. Rev. C, 66, p. 034904. , (STAR Collaboration),. PRVCAN 0556-2813 10.1103/PhysRevC.66.034904Abelev, B.I., (2009) Phys. Rev. C, 80, p. 064912. , (STAR Collaboration), () PRVCAN 0556-2813 10.1103/PhysRevC.80.064912;Abelev, B.I., (2010) Phys. Rev. Lett., 105, p. 022301. , PRLTAO 0031-9007 10.1103/PhysRevLett.105.022301Adler, S.S., (2006) Phys. Rev. Lett., 97, p. 052301. , (PHENIX Collaboration), () PRLTAO 0031-9007 10.1103/PhysRevLett.97. 052301;Adare, A., (2008) Phys. Rev. C, 78, p. 014901. , (PHENIX Collaboration),. PRVCAN 0556-2813 10.1103/PhysRevC.78.014901Stoecker, H., (2005) Nucl. Phys. A, 750, p. 121. , NUPABL 0375-9474 10.1016/j.nuclphysa.2004.12.074;Casalderrey-Solana, J., Shuryak, E.V., Teaney, D., (2005) J. Phys. Conf. Ser., 27, p. 22. , 1742-6588 10.1088/1742-6596/27/1/003;Ruppert, J., Müller, B., (2005) Phys. Lett. B, 618, p. 123. , PYLBAJ 0370-2693 10.1016/j.physletb.2005.04.075Betz, B., (2010) Phys. Rev. Lett., 105, p. 222301. , PRLTAO 0031-9007 10.1103/PhysRevLett.105.222301;Ma, G.L., Wang, X.N., (2011) Phys. Rev. Lett., 106, p. 162301. , PRLTAO 0031-9007 10.1103/PhysRevLett.106.162301Abelev, B.I., (2009) Phys. Rev. Lett., 102, p. 052302. , (STAR Collaboration),. PRLTAO 0031-9007 10.1103/PhysRevLett.102.052302Adamczyk, L., (2014) Phys. Rev. Lett., 112, p. 122301. , (STAR Collaboration),. 10.1103/PhysRevLett.112.12230
    corecore