24,806 research outputs found

    Which hadronic decay modes are good for ηb\eta_b searching: double J/ψJ/\psi or something else?

    Full text link
    It has been controversial whether ηb\eta_b can be discovered in Tevatron Run 2 through the decay ηb→J/ψJ/ψ\eta_b\to J/\psi J/\psi followed by J/ψ→μ+μ−J/\psi\to \mu^+\mu^-. We clear this controversy by an explicit calculation which predicts Br[ηb→J/ψJ/ψ]{\rm Br}[\eta_b\to J/\psi J/\psi] to be of order 10−810^{-8}. It is concluded that observing eta_b through this decay mode in Tevatron Run 2 is rather unrealistic. The eta_b may be observed in the forthcoming LHC experiments through the 4-lepton channel, if the background events can be significantly reduced by imposing some kinematical cuts. By some rough but plausible considerations, we find that the analogous decay processes eta_b to VV, D^*\bar{D}^* also have very suppressed branching ratios, nevertheless it may be worth looking for \eta_b at LHC and Super B factory through the decay modes \eta_b \to K_S K^{\pm}\pi^{\mp}, D^*\bar{D}.Comment: v2; 28 pages, 2 figures. References added, presentation improved. Discussion on possible nonperturbative mechanism for eta_b->VV added, analysis for eta_b->VP updated by incoprating the U-spin violation effec

    Rotary bistable and Parametrically Excited Vibration Energy Harvesting

    Get PDF
    Parametric resonance is a type of nonlinear vibration phenomenon [1], [2] induced from the periodic modulation of at least one of the system parameters and has the potential to exhibit interesting higher order nonlinear behaviour [3]. Parametrically excited vibration energy harvesters have been previously shown to enhance both the power amplitude [4] and the frequency bandwidth [5] when compared to the conventional direct resonant approach. However, to practically activate the more profitable regions of parametric resonance, additional design mechanisms [6], [7] are required to overcome a critical initiation threshold amplitude. One route is to establish an autoparametric system where external direct excitation is internally coupled to parametric excitation [8]. For a coupled two degrees of freedom (DoF) oscillatory system, principal autoparametric resonance can be achieved when the natural frequency of the first DoF f1 is twice that of the second DoF f2 and the external excitation is in the vicinity of f1. This paper looks at combining rotary and translatory motion and use autoparametric resonance phenomena

    Field Testing of a Cyclist Collision Avoidance System for Heavy Goods Vehicles

    Get PDF
    This research focused on preventing collisions between cyclists and heavy goods vehicles (HGVs). A collision avoidance system, designed to avoid side-to-side collisions between HGVs and cyclists, is proposed. The cyclist’s motion relative to the HGV is measured with an array of ultrasonic sensors. The detected distances from ultrasonic sensors are processed in real time to construct a smooth trajectory for the cyclist. The controller assumes constant acceleration and constant yaw rate for both the HGV and the cyclist and extrapolates the relative motion forward in time. The HGVs' brakes are engaged if a collision is predicted. A prototype system was built and fitted onto a test truck. The proposed collision avoidance system was tested in real time and proved to be effective within certain speed ranges.The authors thank the support of the Cambridge Vehicle Dynamics Consortium, whose member at the time of writing are: Anthony Best Dynamics, Camcon, Cambridge University, Denby Transport, Firestone Goodyear, Haldex, Laing O’Rourke, MIRA, SDC Trailers, SIMPACK, Tridec, Tinsley Bridge, Wincanton and Volvo Trucks. Special thanks go to Anthony Best Dynamics and Laing O'Rourke for proving essential testing equipment. Thanks also go to Dr Richard Roebuck, Dr Leon Henderson and Ms Amy Rimmer for their assistance with the testing. The authors also would like to thanks China Scholarship Council and Cambridge Trusts for their contribution to the research.This is the author accepted manuscript. The final version is available from IEEE via http://dx.doi.org/10.1109/TVT.2016.253880

    Gunrock: A High-Performance Graph Processing Library on the GPU

    Full text link
    For large-scale graph analytics on the GPU, the irregularity of data access and control flow, and the complexity of programming GPUs have been two significant challenges for developing a programmable high-performance graph library. "Gunrock", our graph-processing system designed specifically for the GPU, uses a high-level, bulk-synchronous, data-centric abstraction focused on operations on a vertex or edge frontier. Gunrock achieves a balance between performance and expressiveness by coupling high performance GPU computing primitives and optimization strategies with a high-level programming model that allows programmers to quickly develop new graph primitives with small code size and minimal GPU programming knowledge. We evaluate Gunrock on five key graph primitives and show that Gunrock has on average at least an order of magnitude speedup over Boost and PowerGraph, comparable performance to the fastest GPU hardwired primitives, and better performance than any other GPU high-level graph library.Comment: 14 pages, accepted by PPoPP'16 (removed the text repetition in the previous version v5

    Momentum Kick Model Description of the Ridge in (Delta-phi)-(Delta eta) Correlation in pp Collisions at 7 TeV

    Full text link
    The near-side ridge structure in the (Delta phi)-(Delta eta) correlation observed by the CMS Collaboration for pp collisions at 7 TeV at LHC can be explained by the momentum kick model in which the ridge particles are medium partons that suffer a collision with the jet and acquire a momentum kick along the jet direction. Similar to the early medium parton momentum distribution obtained in previous analysis for nucleus-nucleus collisions at 0.2 TeV, the early medium parton momentum distribution in pp collisions at 7 TeV exhibits a rapidity plateau as arising from particle production in a flux tube.Comment: Talk presented at Workshop on High-pT Probes of High-Density QCD at the LHC, Palaiseau, May 30-June2, 201

    Cantilevers-on-membrane design for broadband MEMS piezoelectric vibration energy harvesting

    Get PDF
    Most MEMS piezoelectric vibration energy harvesters involve either cantilever-based topologies, doubly-clamped beams or membrane structures. While these traditional designs offer simplicity, their frequency response for broadband excitation are typically inadequate. This paper presents a new integrated cantilever-on-membrane design that attempts to both optimise the strain distribution on a piezoelectric membrane resonator and improve the power responsiveness of the harvester for broadband excitation. While a classic membrane-based resonator has the potential to theoretically offer wider operational frequency bandwidth than its cantilever counterpart, the addition of a centred proof mass neutralises its otherwise high strain energy regions. The proposed topology addresses this issue by relocating the proof mass onto subsidiary cantilevers and integrates the merits of both the membrane and the cantilever designs. When experimentally subjected to a band-limited white noise excitation, up to approximately two folds of power enhancement was observed for the new membrane harvester compared to a classic plain membrane device
    • …
    corecore