170 research outputs found

    Dispersion relation of electromagnetic ion cyclotron waves using Cluster observations

    Get PDF
    Multi-point wave observations on Cluster spacecraft are used to infer the dispersion relation of electromagnetic ion cyclotron (EMIC) waves. In this study we use a phase differencing method and observations from STAFF and WHISPER during a well-studied event of 30 March 2002. The phase differencing method requires the knowledge of the direction of the wave vector, which was obtained using minimum variance analysis. Wave vector amplitudes were calculated for a number of frequencies to infer the dispersion relation experimentally. The obtained dispersion relation is largely consistent with the cold plasma dispersion relation. The presented method allows inferring the dispersion relation experimentally. It can be also used in the future to analyse the hot plasma dispersion relation of waves near the local gyrofrequency that can occur under high plasma beta conditions.UC Lab Fee GrantUnited States. National Aeronautics and Space Administration (Grant NNX10AK99G

    Electron acceleration at Jupiter: input from cyclotron-resonant interaction with whistler-mode chorus waves

    Get PDF
    Jupiter has the most intense radiation belts of all the outer planets. It is not yet known how electrons can be accelerated to energies of 10 MeV or more. It has been suggested that cyclotron-resonant wave-particle interactions by chorus waves could accelerate electrons to a few MeV near the orbit of Io. Here we use the chorus wave intensities observed by the Galileo spacecraft to calculate the changes in electron flux as a result of pitch angle and energy diffusion. We show that, when the bandwidth of the waves and its variation with L are taken into account, pitch angle and energy diffusion due to chorus waves is a factor of 8 larger at L-shells greater than 10 than previously shown. We have used the latitudinal wave intensity profile from Galileo data to model the time evolution of the electron flux using the British Antarctic Survey Radiation Belt (BAS) model. This profile confines intense chorus waves near the magnetic equator with a peak intensity at ∼5° latitude. Electron fluxes in the BAS model increase by an order of magnitude for energies around 3 MeV. Extending our results to L = 14 shows that cyclotron-resonant interactions with chorus waves are equally important for electron acceleration beyond L = 10. These results suggest that there is significant electron acceleration by cyclotron-resonant interactions at Jupiter contributing to the creation of Jupiter's radiation belts and also increasing the range of L-shells over which this mechanism should be considered

    Scattering of Ultra-relativistic Electrons in the Van Allen Radiation Belts Accounting for Hot Plasma Effects.

    Get PDF
    Electron flux in the Earth's outer radiation belt is highly variable due to a delicate balance between competing acceleration and loss processes. It has been long recognized that Electromagnetic Ion Cyclotron (EMIC) waves may play a crucial role in the loss of radiation belt electrons. Previous theoretical studies proposed that EMIC waves may account for the loss of the relativistic electron population. However, recent observations showed that while EMIC waves are responsible for the significant loss of ultra-relativistic electrons, the relativistic electron population is almost unaffected. In this study, we provide a theoretical explanation for this discrepancy between previous theoretical studies and recent observations. We demonstrate that EMIC waves mainly contribute to the loss of ultra-relativistic electrons. This study significantly improves the current understanding of the electron dynamics in the Earth's radiation belt and also can help us understand the radiation environments of the exoplanets and outer planets

    Gap filling of solar wind data by singular spectrum analysis

    No full text
    International audienceObservational data sets in space physics often contain instrumental and sampling errors, as well as large gaps. This is both an obstacle and an incentive for research, since continuous data sets are typically needed for model formulation and validation. For example, the latest global empirical models of Earth's magnetic field are crucial for many space weather applications, and require time-continuous solar wind and interplanetary magnetic field (IMF) data; both of these data sets have large gaps before 1994. Singular spectrum analysis (SSA) reconstructs missing data by using an iteratively inferred, smooth "signal" that captures coherent modes, while "noise" is discarded. In this study, we apply SSA to fill in large gaps in solar wind and IMF data, by combining it with geomagnetic indices that are time-continuous, and generalizing it to multivariate geophysical data consisting of gappy "driver" and continuous "response" records. The reconstruction error estimates provide information on the physics of co-variability between particular solar-wind parameters and geomagnetic indices. Copyright 2010 by the American Geophysical Union

    Locations of boundaries of outer and inner radiation belts as observed by Cluster and Double Star

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/95464/1/jgra21211.pd

    Radial diffusion modeling with empirical lifetimes: comparison with CRRES observations

    Get PDF
    International audienceA time dependent radial diffusion model is used to quantify the competing effects of inward radial diffusion and losses on the distribution of the outer zone relativistic electrons. The rate of radial diffusion is parameterized by Kp with the loss time as an adjustable parameter. Comparison with HEEF data taken over 500 Combined Release and Radiation Effects Satellite (CRRES) orbits indicates that 1-MeV electron lifetimes near the peak of the outer zone are less than a day during the storm main phase and few days under less disturbed conditions. These values are comparable to independent estimates of the storm time loss rate due to scattering by EMIC waves and chorus emission, and also provide an acceptable representation of electron decay rates following the storm time injection. Although our radial diffusion model, with data derived lifetimes, is able to simulate many features of the variability of outer zone fluxes and predicts fluxes within one order of magnitude accuracy for most of the storms and L values, it fails to reproduce the magnitude of flux changes and the gradual build up of fluxes observed during the recovery phase of many storms. To address these differences future modeling should include an additional local acceleration source and also attempt to simulate the pronounced loss of electrons during the main phase of certain storms

    Prompt energization of relativistic and highly relativistic electrons during a substorm interval: Van Allen Probes observations

    Get PDF
    Abstract On 17 March 2013, a large magnetic storm significantly depleted the multi-MeV radiation belt. We present multi-instrument observations from the Van Allen Probes spacecraft Radiation Belt Storm Probe A and Radiation Belt Storm Probe B at ~6 Re in the midnight sector magnetosphere and from ground-based ionospheric sensors during a substorm dipolarization followed by rapid reenergization of multi-MeV electrons. A 50% increase in magnetic field magnitude occurred simultaneously with dramatic increases in 100 keV electron fluxes and a 100 times increase in VLF wave intensity. The 100 keV electrons and intense VLF waves provide a seed population and energy source for subsequent radiation belt enhancements. Highly relativistic (\u3e2 MeV) electron fluxes increased immediately at L* ~ 4.5 and 4.5 MeV flux increased \u3e90 times at L* = 4 over 5 h. Although plasmasphere expansion brings the enhanced radiation belt multi-MeV fluxes inside the plasmasphere several hours postsubstorm, we localize their prompt reenergization during the event to regions outside the plasmasphere. Key Points Substorm dynamics are important for highly relativistic electron energization Cold plasma preconditioning is significant for rapid relativistic energization Relativistic / highly relativistic electron energization can occur in \u3c 5 hrs

    The origin of Jupiter's outer radiation belt

    Get PDF
    The intense inner radiation belt at Jupiter (>50 MeV at 1.5 RJ) is generally accepted to be created by radial diffusion of electrons from further away from the planet. However, this requires a source with energies that exceed 1 MeV outside the orbit of the moon Io at 5.9 RJ, which has never been explained satisfactorily. Here we test the hypothesis that this source population could be formed from a very soft energy spectrum, by particle injection processes and resonant electron acceleration via whistler mode chorus waves. We use the British Antarctic Survey Radiation Belt Model to calculate the change in the electron flux between 6.5 and 15 RJ; these are the first simulations at Jupiter combining wave particle interactions and radial diffusion. The resulting electron flux at 100 keV and 1 MeV lies very close to the Galileo Interim Radiation Electron model spectrum after 1 and 10 days, respectively. The primary driver for the increase in the flux is cyclotron resonant acceleration by chorus waves. A peak in phase space density forms such that inside L≈9 radial diffusion transports electrons toward Jupiter, but outside L≈9 radial diffusion acts away from the planet. The results are insensitive to the softness of the initial energy spectrum but do depend on the value of the flux at the minimum energy boundary. We conclude by suggesting that the source population for the inner radiation belt at Jupiter could indeed be formed by wave-particle interactions
    • …
    corecore