40,233 research outputs found

    A mathematical simulation model of the CH-47B helicopter, volume 1

    Get PDF
    A nonlinear simulation model of the CH-47B helicopter was adapted for use in the NASA Ames Research Center (ARC) simulation facility. The model represents the specific configuration of the ARC variable stability CH-47B helicopter and will be used in ground simulation research and to expedite and verify flight experiment design. Modeling of the helicopter uses a total force approach in six rigid body degrees of freedom. Rotor dynamics are simulated using the Wheatlely-Bailey equations including steady-state flapping dynamics. Also included in the model is the option for simulation of external suspension, slung-load equations of motion

    Novel characterization method of impedance cardiography signals using time-frequency distributions

    Get PDF
    The purpose of this document is to describe a methodology to select the most adequate time-frequency distribution (TFD) kernel for the characterization of impedance cardiography signals (ICG). The predominant ICG beat was extracted from a patient and was synthetized using time-frequency variant Fourier approximations. These synthetized signals were used to optimize several TFD kernels according to a performance maximization. The optimized kernels were tested for noise resistance on a clinical database. The resulting optimized TFD kernels are presented with their performance calculated using newly proposed methods. The procedure explained in this work showcases a new method to select an appropriate kernel for ICG signals and compares the performance of different time-frequency kernels found in the literature for the case of ICG signals. We conclude that, for ICG signals, the performance (P) of the spectrogram with either Hanning or Hamming windows (P¿=¿0.780) and the extended modified beta distribution (P¿=¿0.765) provided similar results, higher than the rest of analyzed kernels.Peer ReviewedPostprint (published version

    High-Pressure Induced Structural Phase Transition in CaCrO4: Evidence from Raman Scattering Studies

    Full text link
    Raman spectroscopic studies have been carried out on CaCrO4 under pressure up to 26GPa at ambient temperature. The Raman spectra showed CaCrO4 experienced a continuous structural phase transition started at near 6GPa, and finished at about 10GPa. It is found that the high-pressure phase could be quenched to ambient conditions. Pressure dependence of the Raman peaks suggested there existed four pressure regions related to different structural characters. We discussed these characters and inferred that the nonreversible structural transition in CaCrO4, most likely was from a zircon-type (I41/amd) ambient phase to a scheelite-type high pressure structure (I41/a).Comment: submitte

    Upper limits on stray force noise for LISA

    Full text link
    We have developed a torsion pendulum facility for LISA gravitational reference sensor ground testing that allows us to put significant upper limits on residual stray forces exerted by LISA-like position sensors on a representative test mass and to characterize specific sources of disturbances for LISA. We present here the details of the facility, the experimental procedures used to maximize its sensitivity, and the techniques used to characterize the pendulum itself that allowed us to reach a torque sensitivity below 20 fNm /sqrt{Hz} from 0.3 to 10 mHz. We also discuss the implications of the obtained results for LISA.Comment: To be published in Classical and Quantum Gravity, special issue on Amaldi5 2003 conference proceedings (10 pages, 6 figures

    Analysis of aggregated tick returns: evidence for anomalous diffusion

    Full text link
    In order to investigate the origin of large price fluctuations, we analyze stock price changes of ten frequently traded NASDAQ stocks in the year 2002. Though the influence of the trading frequency on the aggregate return in a certain time interval is important, it cannot alone explain the heavy tailed distribution of stock price changes. For this reason, we analyze intervals with a fixed number of trades in order to eliminate the influence of the trading frequency and investigate the relevance of other factors for the aggregate return. We show that in tick time the price follows a discrete diffusion process with a variable step width while the difference between the number of steps in positive and negative direction in an interval is Gaussian distributed. The step width is given by the return due to a single trade and is long-term correlated in tick time. Hence, its mean value can well characterize an interval of many trades and turns out to be an important determinant for large aggregate returns. We also present a statistical model reproducing the cumulative distribution of aggregate returns. For an accurate agreement with the empirical distribution, we also take into account asymmetries of the step widths in different directions together with crosscorrelations between these asymmetries and the mean step width as well as the signs of the steps.Comment: 9 pages, 10 figures, typos correcte

    Uplink performance investigations of the service area based beyond 3G system JOINT

    Get PDF
    The joint transmission and detection integrated network (JOINT) is a novel OFDM-based vNP00 air interface solution for beyond 3G (B3G) mobile radio communications systems WMSL02. JOINT aims at eliminating the multiple access interference (MAI) and improving the system capacity by the application of MIMO techniques applied in the service area (SA) based system architecture. In a SA based structure the intra-SA multiple access interference (MAI) can be easily combated by algorithms like, e.g., joint detection (JD) Kle96,Ver98 in the uplink. The parameters like, e.g., the SA size, the system load and reuse factor show great impacts on the system performances, in terms of the average bit error rate (BER) and the BER statistics. Spectrum efficiency of JOINT is also investigated based on the simulation results

    Resonant vibrations, peak broadening and noise in single molecule contacts: beyond the resonant tunnelling picture

    Full text link
    We carry out experiments on single-molecule junctions at low temperatures, using the mechanically controlled break junction technique. Analyzing the results received with more than ten different molecules the nature of the first peak in the differential conductance spectra is elucidated. We observe an electronic transition with a vibronic fine structure, which is most frequently smeared out and forms a broad peak. In the usual parameter range we find strong indications that additionally fluctuations become active even at low temperatures. We conclude that the electrical field feeds instabilities, which are triggered by the onset of current. This is underscored by noise measurements that show strong anomalies at the onset of charge transport
    • …
    corecore