```
(NASA-LM-84351-VOL-1) A MATGEMAIICAL. NB5-100j)
SIMULAILCN MUDEL LF TEE CH-4TE GELICORIER,
VULUAE 1 (NASA) 137 & IC AC7/A& A01
```


A Mathematical Simulation Model of a CH-47B Helicopter

Jeanine M. Weber, Tung Y. Liu and William Chung

Volume I

A Mathematical Simulation Model of a CH-47B Helicopter

Jeanine M. Weber, Ames Research Center, Moffett Field, California

Turig Y. Liu and William Chung, Computer Sciences Corporation, Mountain View, California

N/S^

Natoonal Aeromaturssand Suare Admuntstration

Ames Research Center

table of CONTENTS

Page
SUMMARY1
NOMENCLATURE1
INTRODUCTION
MATHEMATICAL MODEL DESCRIPTION
Rotors 3
Fuselage Aerodynamics 3
Engine and Governor 13
Mechanical Controls 16
Stability Augmentation System 17
Electronic Control System 18
Slung Load 19
20OPERATIONAL CONSIDERATIONS
24
CONCLUSIONS
Ape24
APPENDIX A: FLAPPING AND CONING EQUATIONS 25
APPENDIX B: INFLOW DYNAMICS SOLUTION 28
REFERENCES31
TABLES 32
FIGURES95

SUMMARY

A nonlinear simulation model of the $C H-47 B$ helicopter, developed by the Boeing Vertol Company (ref. 1), has been adapted for use in the NASA Ames Research Center (ARC) simulation facility. The model represents the specific configuration of the ARC variable stability $\mathrm{CH}-47 \mathrm{~B}$ helicopter (fig . 1) and will be used in ground simulation research and to expedite and verify flight experiment design.

Modeling of the helicopter uses a total force approach in six rigid body degrees of freedom. Rotor dynamics are simulated using the Wheatley-Bailey equations, including steady-state flapping dynamics. Also included in the model is the option for simulation of external suspension, slung-load equations of motion.

Validation of the model (discussed in Volume II of this report) has been accomplished using static and dynamic data from the original Boeing Vertol mathematical model and flight test data from references 2 and 3 , as reproduced in reference 4. The model is appropriate for use in real-time piloted simulation and is implemented on the ARC Sigma IX computer where it may be operated with a digital cycle time of 0.03 sec .

NOMENCLATURE

AERO fuselage aerodynamics subroutine
ARC Ames Research Center
BV Boeing Vertol Company
c.g. center of gravity

CONTROL mechanical control system subroutine
DCPT differential collective pitch trim
ECS electronic control system
ENGINE engine and governor subroutine
$N_{B} \quad$ change in helicopter yawing moment per sideslip angle
rpm revolutions per minute
ROTOR rotor dynamics subroutine
SAS stability augmentation system
SLING sling load dynamics subroutine

SNP shaft-normal-plane
SNPW shaft-normal-plane-wind
$V_{\text {eq }}$ equivalent velocily

INTRODUCTION

At Ames Research Center (ARC), the $\mathrm{CH}-47 \mathrm{~B}$ provides a unique capability for generic flight research in flight controls and displays for rotorcraft and VTOL aircraft. In addition to the existing potential for variable-stability flight, a programmable display system and a variable force-feel system are being developed. The purpose of this mathematical model development is to provide the capability for reai-time simulation and for the preliminary check-out of in-flight research experiments for the variablestability $\mathrm{CH}-47 \mathrm{~B}$ helicopter.

Subroutines that comprise the mathematical model describe the rotor systems, fuselage aerodynamics, engine and governor, mechanical control system, the option for either an electronic control system or the basic stability augmentation system (SAS), and the option for externally suspended, slung-load dynamics. Folward and rear rotor dynamics are simulated in a shaft-normal-plane-wind (SNPW) reference frame with the Wheatley-Bailey (modified tip path plane) equations of references 5, 6, and 7. Steady state flapping dynamics are represented with these equations; however, in-plane motions are neglected. Forces and moments at the rotor hubs are then calculated as a function of rotor aerodynamic conditions and dynamics, after which they are resolved to the helicopter center of gravity. Six rigid-body forces and moments resulting from fuselage aerodynamics are fuond from tabular data interpolated as a function of fuselage angle of attack and sideslip angle.

Each engine is represented with nonlinear, second-order dynamics; left and right engine models are identical, yet are modeled separately. The fuel control system and gas generator are each mode!ed as a first-order system, the latter including a variable time constant dependent upon power and power error. The engine governor, whose purpose is to regulate rotor rpm , is modeled as a linear, third-order system.

Modeling of the hardware from the cockpit controls to the swashplate comprises the mechanical controls subroutine. Included are upstream limiters on each control input, first- and second-stage mixing, swashplate limits, and swiveling and pivoting actuation dynamics (first order).

Stability augmentation in the form of longitudinal, lateral, and directional rate damping is modeled. Additional features of the directional SAS include turn coordination and feedback of sideslip angle to obtain a stable yawing moment change with sideslip $\left(N_{\beta}\right)$.

The provision for an electronic control system (ECS) model has been included in this program. Although no specific ECS configuration has been documented in this report, the information necessary to integrate such a subroutine into the simulation model is discussed in the section concerning the ECS.

A model of an externally suspended, slung load has been developed and is available for use with the helicopter simulation model. Three state variables, defining the position of the 1 oad and suspension cables relative to the helicopter, are represented
with nonlinear, second-order equations of motion. Thus, the combined system (helicopter and slung load), is represented with nine coupled, differential equations
modeling the two rigid bodies.

The specifications of the real-time simulation model are presented in this report, organized by subroutine. Documentation of each subroutine is characterized computer an ineering explanation, input/output variable lists, and the definition of in the following order: and governor (ENGINE), mechanical control system (SAS), electronic control system (system (CONTROL), stability augmentation

Operational considerat constants and other information are discussed, including the specification of input cab and a visual display.

Finally, in Volume II of this report, results of the ARC static and dynamic model validation are discussed. ARC static trim and stability derivative data are tabulated; also, ARC dynamic data are compared with a Boeing Vertol Company (BV) model and CH-47 flight-test data from references 2 and 3 (reproduced in ref. 4).

MATHEMATICAL MODEL DESCRIPTION

Rotors

Wheat ley-Bailey (modified tip-path plane) equations (refs. 5, 6, and 7) form the basis for the simulation of the rotors in this mathematical model. In subroutine the SNPW refer forces and moments resulting from each helicopter rotor are computed in the helicopter center of gravity (c.g.) for insformed to the body reference frame at freedom rigid-body equations (which are part incorporation into the six degree-offacility and are known as subroutine SMART
.
Figure 2 shows a signal flow diagram of the rotor subroutine (in terms of computer memonics), including variable inputs and outputs to and from other model subroutines. The equations are executed sequentially as indicated by the numbered modules in the figure. Since the calculation of rotor hub forces and moments is copter body and the SNPW re it necessary to perform transformations between the helirotor c.g. relative to the rerence frames. To do this, the position of the actual tion (1), actual helicopter c.g. (fig. 3) is computed using equa-
where the positions of the baseline rotor $c . g$. relative to the baseline helicopter
c.g. are given by:

$$
\left\{\begin{array}{l}
l_{F_{x}} \\
d_{F_{x}} \\
h_{F_{x}}
\end{array}\right\}=\left\{\begin{array}{c}
20.43 \mathrm{ft} \\
0.0 \mathrm{ft} \\
7.49 \mathrm{ft}
\end{array}\right\},\left\{\begin{array}{l}
\mathrm{l}_{\mathrm{R}_{x}} \\
\mathrm{~d}_{R_{x}} \\
\mathrm{~h}_{R_{x}}
\end{array}\right\}=\left\{\begin{array}{r}
-18.46 \mathrm{ft} \\
0.0 \mathrm{ft} \\
12.16 \mathrm{ft}
\end{array}\right\}
$$

The vector

$$
\begin{aligned}
& \operatorname{DXCG} \\
& \operatorname{DYCG}
\end{aligned}\left\{\begin{array}{l}
\Delta \mathrm{X}_{\mathrm{c} \cdot \mathrm{~g}} \\
\Delta Y_{c \cdot g} \\
\Delta Z G G
\end{array}\right\}
$$

is the position in inches of the c.g. of the $\begin{gathered}\text { etual helicopter relative to the base- }\end{gathered}$ line specifications. Baseline helicopter c.g. positions are

$$
\left\{\begin{array}{l}
X_{c \cdot g} \\
Y_{c \cdot g} \\
Z_{c \cdot g}
\end{array}\right\}=\left\{\begin{array}{r}
331 \mathrm{in} . \\
0.0 \mathrm{in} \cdot \\
11.2 \mathrm{in} .
\end{array}\right\}
$$

and the sign conventions are as given in figure 4.
To compute forces and moments at the rotor hub, helicopter body-axis velocities (from subroutine SMART, rigid-body dynamics model) are transformed from the body reference frame to the rotor SNPW reference frame. Representation of the body axis velocities at the rotor hubs is given in equation (2).

Body-axis velocities (at the rotor hub) are transformed (eq. (3)) from the body to the SNP reference frame through shaft incidence angles $i_{F}, 1_{R}$ (fig. 5).

The rotor SNP may be considered an intermediate reference frame between the helicopter body and SNPW reference frames.

ORIGINFIL $\because \therefore$
OF POOR QUnali.

Rotor sidesifp angle is defined by equation (4),

$$
\begin{align*}
& \text { BETAFR } \tag{4}\\
& \text { BETARR }
\end{align*} \quad B_{F, R}^{\prime}=\arctan \frac{{ }^{V}{ }_{F, R_{2}}}{u_{F, R_{2}}}
$$

and SNP translational velocities are effectively resolved (eqs. (5) and (6)) through $\beta_{F, R}^{\prime}$ into the SNPW reference frame, as shown in figure 6. Rotor-hub forces and moments are eventually computed in this frame, as indicated in the figure.

$$
\begin{align*}
& \text { UFR } \\
& U_{F, R}
\end{align*}=\sqrt{u_{F, R_{2}}^{2}+v_{F, R_{2}}^{2}}
$$

WFR

$$
\begin{equation*}
\text { WRR } \quad{ }^{w} F, R=w_{F, R} \tag{6}
\end{equation*}
$$

Next, helicopter-body angular velorities (from SMART) are transformed (eqs. (7) and (8)) to the SNPW reference trame as shown in figure 6.

$$
\begin{align*}
& \operatorname{PFRR}\left[\begin{array}{l}
p_{F} \\
q_{F} \\
r_{F}
\end{array}\right]=\left[\begin{array}{rcc}
\cos \beta_{F}^{\prime} \cos i_{F} & \sin \beta_{F}^{\prime} & \cos \beta_{F}^{\prime} \sin i_{F} \\
-\sin \beta_{F}^{\prime} \cos i_{F} & \cos \beta_{F}^{\prime} & \sin \beta_{F}^{\prime} \sin i_{F} \\
-\sin i_{F} & 0 & \cos i_{F}
\end{array}\right]\left[\begin{array}{l}
P_{B} \\
q_{B} \\
r_{B 3}
\end{array}\right] \tag{7}\\
& \operatorname{PRR}\left[\begin{array}{l}
\mathrm{P}_{\mathrm{R}} \\
\operatorname{RRR}\left[q_{R}\right. \\
r_{R}
\end{array}\right]=\left[\begin{array}{rrrr}
-\cos \beta_{R}^{\prime} \cos i_{R} & -\sin \beta_{R}^{\prime} & -\cos \beta_{R}^{\prime} \sin i_{R} \\
-\sin \beta_{R}^{\prime} \cos i_{R} & \cos \beta_{R}^{\prime} & -\sin \beta_{R}^{\prime} \sin i_{R} \\
\sin i_{R} & 0 & -\cos i_{R}
\end{array}\right]\left[\begin{array}{l}
r_{R} \\
r_{B} \\
r_{B}
\end{array}\right] \tag{8}
\end{align*}
$$

Rotor angular velocity is corrected for helicopter yaw rate in equation (9):
OMEGFR

$$
\begin{equation*}
\text { OMEGRR }{ }^{\Omega_{F}, R}=\Omega_{F, R}^{\prime}-r_{F, R} \tag{9}
\end{equation*}
$$

and rotor tip speed is calculated based on this rpm in equation (10):

$$
\begin{array}{ll}
\operatorname{VTIPFR} & \\
\text { VTIPRR } & \operatorname{Tip}_{F, R}=R_{B_{F, R}}{ }_{S i}, R, R \tag{10}
\end{array}
$$

Advance ratio and the free stream component of inflow ratio are calculated in equations (11) and (12):

$$
\begin{gather*}
\text { AMUFR } \tag{11}\\
\text { AMURR }
\end{gather*}{ }^{\mu} F, R=\frac{u_{F, R}}{R_{B_{F, R}}^{\left(\Omega \Omega_{F, R}^{\prime}-r_{F, R}\right)}}
$$

$$
\underset{A L M P R R}{\operatorname{ALMPFR}} \quad \lambda_{F, R}^{\prime}=\frac{w_{F, R}}{R_{B_{F, R}}^{\left(\Omega_{F, R}^{\prime}-r_{F, R}\right)}}
$$

Prior to their usage in computations (f.e., for flapping coefficients and rotor forces and moments), the pilot's control inputs are transformed to the SNPW reference frame and corrected for control phasing angle ($\phi \mathrm{p}$) and pitch-flap coupling (δ_{3}). Thus, it is unnecessary to make these corrections during the actual computation of these quantities (as noted in the flapping assumptions which follow). Longitudinal and lateral cyclic pitch in the SNP reference frame (from subroutine CONTROL) are transformed to the SNPW reference frame in equations (13) and (14).

Although the pitch-flap coupling and control phasing angles are zero in the current configuration of the $\operatorname{ARC} C H-47 B$, the capability for these variations has been included in the simulation model. The purpose of the control phasing angle, ϕ_{p}, is to offset the lead of the blade relative to the pitch hinge, which was introduced by pitch-flap $\left(\delta_{3}\right)$ coupling (fig. 7, taken from ref. 10). In equations (15) and (16), rotor cyclic pitch positions are transformed through control phasing angle, ϕ_{p} (fig. 8).

In equation (17), rotor cyclic and collective positions are corrected for δ_{3} (ref. ll).

OF POOR Qu:....
where $K_{\beta_{F, R}}=-\tan \left(\delta_{3_{F, R}}\right)$.
Rotor degrees of freedom are limited to feathering and the computation of steady state flapping and coning cuefficients. No in-plane (lead-lag) degree of freedom has been considered. Flapping and coning coefficients are computed by solving a 3×3 linear system of algebraic equations, and are developed based upon the following simplifying assumptions (ref. 1):

1. Only the first harmonic terms are used.
2. There is a uniform inflow.
3. No reverse flow is considered.
4. Identical forms for the front and rear rotors are used.
5. There are no pitch-flap coupling effects (the control inputs are corrected in this regard).
6. There is a zero tip-loss factor.
7. There is a negligible hinge offset.
8. Rigid blades are used.
9. There are no compressibility effects.
10. There is a constant rotor airfoil-section lift-curve slope.
11. The rotor airfoil-section drag varies only with rotor angle of attack.

Steady-state flapping and coning angles are found by solving equation (18) with Cramer's Rule. (The derivation of these equations is given in appendix A.)

$$
\left[\begin{array}{ccc}
A_{F, R} & B_{F, R} & C_{F, R} \tag{18}\\
D_{F, R} & E_{F, R} & F_{F, R} \\
G_{F, R} & H_{F, R} & I_{F, R}
\end{array}\right]\left[\begin{array}{l}
a_{0_{F}, R} \\
a_{{ }^{\prime} F, R} \\
b_{b_{F, R}}
\end{array}\right]=\left[\begin{array}{l}
J_{F, R} \\
{ }^{K_{F, R}} \\
L_{F, R}
\end{array}\right]
$$

where:

$$
A_{F, R}=\frac{12 I_{F, R}}{\rho a_{F, R}{ }^{C_{F}, R^{R_{B}^{4}}}{ }_{F, R}}-\frac{3}{2} K_{B_{F, R}}\left(1+\mu_{F, R}^{2}\right)
$$

$$
\begin{aligned}
& B_{F, R}=0 \\
& C_{F, R}=2 \mu_{F, R} K_{B_{F, R}} \\
& D_{F, R}=-\frac{2}{3} K_{\beta_{F, R}} \mu_{F, R} \\
& E_{F, R}=\frac{1}{4}-\frac{\mu_{F, R}^{2}}{8} \\
& F_{F, R}=K_{B_{F, R}}\left(\frac{1}{4}+\frac{3}{8} \mu_{F, R}^{2}\right) \\
& G_{F, R}=-\frac{4}{3} \frac{\mu_{F, R}^{2}}{\left(1+\frac{\mu_{F, R}^{2}}{2}\right)} \\
& H_{F, R}=-K_{B_{F, R}} \\
& I_{F, R}=1.0 \\
& J_{F, R}=\frac{3}{2} \theta_{0}^{\prime}{ }_{F, R}\left(I+\mu_{F, R}^{2}\right)+2 \lambda_{F, R}-2 \mu_{F, R}^{B}{ }_{I_{C}}{ }_{F, R R_{2}}+\theta_{t W_{F, R}}\left(1.2+\mu_{F, R}^{2}\right) \\
& K_{F, R}=\frac{2}{3} \mu_{F, R}{ }^{\theta} O_{F, R}+\frac{1}{2} \lambda_{F, R} \mu_{F, R}+\frac{1}{2} \theta_{t w_{F, R}} \mu_{F, R}-{ }^{B}{ }_{C_{C, R}}\left(\frac{1}{4}+\frac{3}{8} \mu_{F, R}^{2}\right) \\
& -\frac{4 I_{F, R} q_{F, R}}{\rho a_{F, R}{ }^{C} F, R^{R_{B}}{ }_{F, R}{ }^{\Omega} F, R}\left(1-\frac{\mu_{F, R}^{4}}{4}\right) \\
& L_{F, R}=A_{C_{C, R}}-\frac{16 I_{F, R} p_{F, R}}{\rho a_{F, R}{ }^{C} F, R^{R_{B}^{4}}{ }_{F, R}{ }^{4} F, R}\left(1-\frac{\mu_{F, R}^{2}}{2}\right)
\end{aligned}
$$

Using Wheatley-Bailey theory (refs. 5-7), thrust, torque, side force, and drag at the rotor hubs are computed. Expressions for thrust and torque follow the theory as for rotor side forcem rotor helicopter using the SNPW reference frame. Expressions because the simplified forms provided a better matied by BV during their development the full theoretical expressions.

ORICINRA. IG:
of POOR QuA…
Mean rotor thrust is computed with equation (19).

$$
\begin{equation*}
\left.+\mu_{F, R}\left[\mu_{F, R}\left(\theta_{O_{F, R}}+\frac{1}{2} \theta_{t w_{F, R}}\right)-B_{1_{C, R}}\right]\right\} \tag{19}
\end{equation*}
$$

In coefficient form, thrust is modified owing to limits on its maximum allowable value, for rotor stall, and due to ground effect. Since the maximum allowable normalized thrust coefficient, $2 \mathrm{C}_{\mathrm{T}} / \mathrm{a} \mathrm{\sigma}$, is 1.0 , a limit is imposed if the computed value is greater than 1.0 . As a function of advanced ratio, normalized thrust coefficient is modified as shown in figure 9 for the effects of rotor stall. This is an empirical correction which was derived by BV to provide a better match of the model's dynamic response with wind-tunnel test data and is selected (along with a correction to rotor torque) with flag NSTALL in the simulation model. Thrust coefficient is computed as shown in equation (20)

$$
\begin{array}{ll}
\operatorname{CTFR} & C_{T} \tag{20}\\
\operatorname{CTFR} & =\left(\frac{{ }^{2 C_{T}}}{a_{F, R}}\right. \\
a_{F, R}{ }^{\sigma} F, R
\end{array}{ }^{a_{F, R}{ }^{\sigma}{ }_{F, R}} \frac{2}{2}
$$

and if longitudinal velocity is $1 \in s s$ than 40 knots (and if the ground-effect correction is selected with flag NGREFF), thrust is modified for ground effect as a function of altitude and airspeed. Thrust is calculated in equation (21)
where

$$
\mathrm{K}_{\mathrm{g}, \mathrm{e}, \mathrm{~F}, \mathrm{R}}=1-\frac{\mathrm{U}_{\mathrm{F}, \mathrm{R}}}{\mathrm{U}_{\mathrm{ge}}}\left(\mathrm{U}_{\mathrm{g}, \mathrm{e} .}=40 \text { knots }\right)
$$

and $T_{i . g . e . ~ i s ~ d e t e r m i n e d ~ f r o m ~ f i g u r e ~} 10$ as a function of the rotor height to diameter ratio (h/D) rotor ${ }^{\text {. }}$

Mean aerodynamic corque required is found from equation (22)
CQFR 1
C@RR1

$$
\begin{aligned}
& \frac{2 C_{Q_{F, R}}}{a_{F, R}{ }^{\sigma_{F, R}}}=\mu_{F, R}\left\{0 . 2 5 \mu _ { F , R } \left[4.65 \frac{\delta_{F, R}}{a_{F, R}}-a_{0, R}^{2}+0.25\left(B_{D_{C}}{ }_{F, R} a_{1_{F, R}}-3 a_{i_{F, R}}^{2}\right.\right.\right.
\end{aligned}
$$

$$
\begin{align*}
& +\frac{1}{8}\left({ }^{A_{1} C_{F, R}}{ }^{b_{1}}{ }^{2}, R-{ }^{B_{1}} C_{F, R}{ }^{a_{1}}{ }_{F, R}-a_{1_{F, R}}^{2}-b_{1_{F, R}}^{2}\right) \tag{22}
\end{align*}
$$

As a function of rotor thrust and advance ratio, the torque coefficient is modified for rotor siall (flag NSTALL) as shown in figure 11 . Al so, an empirical correction is made to the torque coefficient to attajn a better match with flight-test data. This correction, the effects of which ars shown in figure 12 , is calculated as a function of advaice ratio and thrust coefficient (flag NTRQCK). Including the two corrections, the aerodynamic torque crefficient is:

$$
\begin{gather*}
C Q R R \tag{23}\\
C Q R R
\end{gather*} C_{Q_{F, R}}=\left(\frac{{ }^{2} C_{C_{F, R}}}{a_{F, R}{ }^{{ }^{\sigma} F, R}}\right) \frac{a_{F, R}{ }^{J} F, R}{2}+\Delta C C_{Q_{F, R}}+\Delta C_{R \cdot S} . \quad{ }_{Q_{F, R}}
$$

and the rotor torque required is

$$
\begin{align*}
& \text { QAERTR } \\
& Q_{\text {QAERRR }} \\
& A E R F, R^{C} \\
& Q_{F, R} \rho \pi R_{B}^{5}, \Omega^{2}
\end{align*}
$$

Rotor sideforce is calculated with equat?n.s (25) - (27).

$$
\begin{align*}
& \left.+\frac{1}{2}{ }^{a_{0}}{ }_{F, R}\left({ }_{F, R}{ }^{B_{2}} C_{F, R}-1.5 \theta_{0}, R-3 \lambda_{F, R}-\theta_{t w_{F, R}}\right)\right\} \\
& +\frac{1}{4} \lambda_{F, R}\left(b_{l_{F, R}}-A_{1_{C, R}}\right)+\frac{1}{6} a_{0_{F, R}}\left(B_{1_{C}}+a_{1_{F, R}}\right) \tag{25}
\end{align*}
$$

YFR

$$
\begin{equation*}
\mathrm{YRR} \quad Y_{F, R}=C_{Y_{F, R}} \rho \pi R_{B, R}^{4} S_{F, R}^{2} \tag{27}
\end{equation*}
$$

A quadratic form is assumed for blade-profile drag (eq. (28)) and the normalizeddrag (H-force) coefficient is calculated as in equation (29).

$$
\begin{array}{ll}
\text { DELFR } \\
\text { DELRR } \tag{28}
\end{array} \quad \delta_{F, R}=\delta_{O_{F, R}}+9 \delta_{1_{F, R}} C_{T, R}^{2}
$$

$$
\begin{array}{cc}
\text { CHFR } 1 & \frac{{ }^{2 C_{H_{F, R}}}}{\mathrm{a}_{F, R}{ }^{\circ} F, R} \tag{29}
\end{array}=C_{T_{F, R}} a_{I_{F, R}}+\frac{\delta_{F, R} \mu_{F, R}}{2 a_{F, R}}
$$

Equations (30) and (31) show the calculations for rotor drag coefficient and li-force, respectively.

$$
\begin{array}{ll}
\operatorname{CHFR} & \tag{30}\\
\operatorname{CHRR} & C_{F, R}=\left(\frac{{ }^{2} C_{H}{ }_{F, R}}{a_{F, R}{ }^{\sigma} F, R}\right) \frac{a_{F, R}{ }^{\sigma} F, R}{2}
\end{array}
$$

HFR

$$
\begin{equation*}
\text { HRR } \quad H_{F, R}=C_{H_{F, R}} \rho \pi R_{B, R}^{4} \Omega_{F, R}^{2} \tag{31}
\end{equation*}
$$

Rolling and pitching moments at the rotor hub resulting from aerodynamic forces are found as a function of steady-state flapping angles (eqs. (32) and (33)).

$$
\begin{array}{ll}
\text { AMHBFR } \\
\text { AMHBRR } & M_{h u b}^{F, R} \tag{32}
\end{array}=\frac{1}{2} e_{F, R} b_{F, R}{ }^{M} W_{F, R} \Omega_{F, R}^{2}{ }^{a}{ }_{I_{F, R}}
$$

ALHBFR

$$
\begin{equation*}
\text { ALHBRR } \quad L_{W, R}=\frac{1}{2} e_{F, R} b_{F, R} M_{W_{F, R}} \Omega_{F, R}^{2} b^{b_{1}, R} \tag{33}
\end{equation*}
$$

Inflow ratio dynamics, which are modeled using the ARC local linearization program LOLIN (ref. 12), are first order and depend upon thrust, advance ratio, and an empirically derived rotor-on-rotor interference algorithm.

$$
\begin{align*}
& \dot{\lambda}_{F}=-\frac{1}{{ }^{\tau} \lambda_{F}}\left\{\dot{\lambda}_{F}-\frac{{ }^{w} F_{F}}{\Omega_{F} R_{B}}+\frac{C_{T}}{2 \sqrt{\mu_{F}^{2}+\lambda_{F}^{2}}}+\frac{D_{F_{P F}} C_{T_{R}}}{2 \sqrt{\mu_{R}^{2}+\lambda_{R}^{2}}}\right\} \tag{34}\\
& \dot{\lambda}_{R}=-\frac{1}{{ }^{\tau} \lambda_{R}}\left\{\lambda_{R}-\frac{{ }^{W_{R}}}{{ }^{\Omega}{ }_{R}{ }^{R_{B}}{ }_{R}}+\frac{C_{T_{R}}}{2 \sqrt{\mu_{R}^{2}+\lambda_{R}^{2}}}+\frac{D_{F_{F R}} C_{T}}{2 \sqrt{\mu_{F}^{2}+\lambda_{F}^{2}}}\right\} \tag{35}
\end{align*}
$$

mekinás:
OF POOR Qumait
Referring to equations (34) and (35), rotor-on-rotor interference parameters $D_{F_{R F}}$ (rear on forward) and $\mathrm{DF}_{\mathrm{FR}}$ (forward on rear) are calculated as showl in equation (36)
where $d^{\prime} F_{F R}$ and $d_{F_{R F}}^{\prime}$ are found, depending upon whether the helicopter is in forward or rearward flight, in figures 13 and $1 / 4$ and $C_{F_{2}}$ is found in itgure 15 . A more detailed description of the LOLIN approach to solving equations (34) and (35) and an explanation of the differences between this approach and the one used originally by $B V$, is given in appendix B.

Finally, rotor forces and moments at each rotor hub are transformed to the helicopter c.g. These forces and moments form a portion of the total forces and moments acting on the rigid body (helicopter) and are integrated in SMART to give the translational and rotational states.

In equations (37) and (38), forces at each rotor hub are transformed from the SNPW to the helicopter body reference frame.

$$
\begin{align*}
& \operatorname{YAERFR}\left[\begin{array}{c}
X_{A E R}^{F} \\
\operatorname{ZAERFR}
\end{array}\right]\left[\begin{array}{ccc}
-\cos \beta_{F}^{\prime} \cos i_{F} & -\sin \beta_{F}^{\prime} \cos i_{F} & \sin i_{F} \\
Z_{A E R} \\
-\sin \beta_{F}^{\prime} & \cos \beta_{F}^{\prime} & 0 \\
-\cos \beta_{F}^{\prime} \sin i_{F} & -\sin \beta_{F}^{\prime} \sin i_{F} & -\cos i_{F}
\end{array}\right]\left[\begin{array}{c}
H_{F} \\
Y_{F} \\
Y_{F}
\end{array}\right] \tag{37}\\
& \operatorname{XAERRR}\left[\begin{array}{l}
\operatorname{XAERRR} \\
\operatorname{XAERRR}
\end{array}\right]\left[\begin{array}{c}
\operatorname{AER}_{R} \\
Y_{\operatorname{AER}_{R}} \\
Z_{\operatorname{AER}_{R}}
\end{array}\right]=\left[\begin{array}{ccc}
-\cos \beta_{R}^{\prime} \cos i_{R} & \sin \beta_{R}^{\prime} \cos i_{R} & \sin i_{R} \\
-\sin \beta_{R}^{\prime} & -\cos \beta_{R}^{\prime} & 0 \\
-\cos \beta_{R}^{\prime} \sin i_{R} & \sin \beta_{R}^{\prime} \sin i_{R} & -\cos i_{R}
\end{array}\right]\left[\begin{array}{c}
H_{R} \\
Y_{R}^{\prime} \\
T_{R}
\end{array}\right] \tag{38}
\end{align*}
$$

Total moments at the helicopter c.g. due to the rotors have contributions from two sources: (1) moments at the helicopter c.g. resulting from forces at the rotor hub and (2) moments at the hub transformed to the c.g. Equation (39) shows the computation of the first contribution, equations (40) and (41) show the computation of the second contribution, and equation (42) gives the summation of moments from each of the two sources.

> uncuat
> OF POOK Quatir

Total rotor forces and moments,

$$
\left\{\begin{array}{l}
\text { XAERFR, XAERRR } \\
\text { YAERFR, YAERRR } \\
\text { ZAERFR, ZAERRR }
\end{array}\right\} \text { and }\left\{\begin{array}{l}
\text { ALARFR } \\
\text { AMARFR }, \text { AMARRF } \\
\text { ANARFR }, \text { ANARR }
\end{array}\right\}
$$

are passed to the $A E R O$ subroutine for summation with the fuselage quantities calculated therein; aerodynamic forces and moments (rotor + fuselage) are transferred to SMART as inputs

$$
\left\{\begin{array}{l}
\text { FAX } \\
\text { FAY } \\
\text { FAZ }
\end{array}\right\} \text { and }\left\{\begin{array}{l}
\text { TAI } \\
\text { TAN } \\
\text { TAN }
\end{array}\right\}
$$

Table 1 is a list of the ROTOR subroutine variables together with constants and conversion factors. Included is each variable, its FORTRAN memonic, units, common location, if applicable, and physical description. Table 2 is a list of the variables transferred between ROTOR and other subroutines.

Fuselage Aerodynamics

Tabular data from rotor-off wind-tunnel tests provides the basis for fuselage aerodynamic forces and moments. These are represented in the helicopter body reference frame and are normalized by fuselage dynamic pressure. The data are obtained from the function tables by linear interpolation on fuselage angle of attack and sideslip angle (figs. 16-21).

Unic.
OF POUR:

To calculate fuselage angle of attack, rotor downash velocity at the fuselage is computed with an tmpirical expression, and is used to modify vertical velocity (eq. (43)!

$$
\begin{equation*}
\text { WBPR } \quad w_{B}^{\prime}=w_{B}-\frac{\left(\lambda_{F}^{\prime}-\lambda_{F}\right) \Omega_{F} R_{B}}{1+D_{F_{R F}}} \tag{43}
\end{equation*}
$$

Using the vertical velocity at the fuselage, w_{B}^{\prime}, fuselage angle of attack is calculated from equation (44).

$$
\begin{equation*}
\text { ALPHFS } \quad \alpha_{\text {FUS }}=\arctan \left(\frac{w_{B}^{\prime}}{u_{B}}\right) \tag{44}
\end{equation*}
$$

Fuselage sideslip angle is computed in equation (45), which is somewhat simplified from the helicopter sideslip angle computed in SMART.

$$
\begin{equation*}
\operatorname{BETAFS} \quad \beta_{F U S}=\arctan \left(\frac{\mathrm{v}_{\mathrm{B}}}{\mathrm{u}_{\mathrm{B}}}\right) \tag{45}
\end{equation*}
$$

Fuselage dynamic pressure, used to normalize force and moment entrjes in the function tables, is found using equation (46).

$$
\begin{equation*}
\text { SQFS } \quad q_{F U S}=\frac{1}{2} \rho\left(u_{B}^{2}+v_{B}^{2}+w_{B}^{\prime 2}\right) \tag{46}
\end{equation*}
$$

From the function tabies, the resulting forces and moments are: (D/q) FUS, $(\mathrm{Y} / \mathrm{q})_{\text {FUS }},(\mathrm{L} / \mathrm{q})_{\text {FUS }},(\Psi / q)_{\text {FUS }},(\mathrm{M} / \mathrm{q})_{\text {FUS }},(\mathrm{N} / \mathrm{q})_{\text {FUS }}$. These quantities are then corrected for differences in the equivalent "flat-plate area" between the actual helicopter and the model used in the wind-tunnel tests from which the data were obtained. This correction accounts for additional sources of drag (i.e., rotor hubs, rotor blades, landing gear) that were not included in the wind-tunnel model.

Correction terms to be applied to the fuselage forces are calculated as shown in equations (47)-(49), where $\Delta f e$ is the difference in flat-plate area; fuselage forces are calculated in equations (50)-(52).

$$
\begin{align*}
& \Delta\left(\frac{D}{q}\right)_{\text {FUS }}=\frac{\Delta f e}{\left[1+\left(\tan \alpha_{F U S}\right)^{2}\left(\tan \beta_{F U S}\right)^{2}\right]^{1 / 2}} \tag{47}\\
& \Delta\left(\frac{Y}{q}\right)_{\text {FUS }}=\frac{\Delta f e \tan \beta_{F U S}}{\left[1+\left(\tan \alpha_{F U S}\right)^{2}\left(\tan \beta_{F U S}\right)^{2}\right]^{1 / 2}} \tag{48}\\
& \Delta\left(\frac{L}{q}\right)_{\text {FUS }}=\frac{\Delta f e \tan \alpha_{F U S}}{\left[1+\left(\tan \alpha_{F U S}\right)^{2}\left(\tan \beta_{F U S}\right)^{2}\right]^{1 / 2}} \tag{49}\\
& \text { XAERFS } X_{\text {FUS }}=-q_{F U S}\left[\left(\frac{D}{q}\right)_{F U S}+\Delta\left(\frac{D}{q}\right)_{F U S}\right] \tag{50}
\end{align*}
$$

$$
\begin{align*}
& \text { YAERFS } Y_{\text {FUS }}=q_{F U S}\left[\left(\frac{Y}{q}\right)_{\text {FUS }}-\Delta\left(\frac{Y}{q}\right)_{F U S}\right] \tag{51}\\
& \text { ZAERFS } Z_{F U S}=-q_{F U S}\left[\left(\frac{L}{q}\right)_{\text {FUS }}+\Delta\left(\frac{L}{q}\right)_{F U S}\right] \tag{52}
\end{align*}
$$

To make the corrections necessary for differences in c.g. position between the actual helicopter and the wind-tunnel model, this moment arm is computed as in equation (53).

SLCFS	$\left[{ }^{8} \mathrm{c}_{\text {FUS }}\right.$	${ }^{\ell} \mathrm{c}_{\mathrm{x}}$	$\left[\mathrm{XX}_{\mathrm{c} \cdot \mathrm{g} \cdot} / 12\right]$
SDCFS	d ${ }^{\text {FUS }}$	$=d_{c_{x}}$	$-\mathrm{LiY}_{\mathrm{c} . \mathrm{g} .} / 12$
SHCFS	${ }^{\mathrm{h}} \mathrm{c}_{\text {FUS }}$	$\left[{ }^{\mathrm{h}} \mathrm{c}_{\mathrm{x}}\right.$	$\left[i z_{\mathrm{c} \cdot \mathrm{g} \cdot} / 12\right]$

the position (in inches) of the c.g. of the actual helicopter relative to its baseline (fig. 4).

Using equation (54), fuselage moments are adjusted for this difference in c.g. position,

If the helicopter is in rearward flight, the signs on $X_{F U S}, M_{F U S}$, and $N_{F U S}$ are reversed to account for the aerodynamic differences at this flignt condition.

Total aerodynamic forces and moments include rotor and fuselage contributions, which are summed at the end of the subroutine (eqs. (55) and (56)) and passed to SMART.

Table 3 gives the definition of the variables, constants, and conversion factors of the AERO subroutine. Table 4 lists input/o'rtput variables to and from other subroutines, together with required input data.

Engine and Governor

Power is supplied to the rotor system by two Lycoming T-55-L7C turbine engines mounted on the aft pylon. Although the representations are identical mathematically, each engine is modeled separately. The block diagram in figure 23 illustrates ...e modeling method for the left engine, including the governor and forward rotor-shaft dynamics. Nonlinear functions are shown in more detail in figures 24-30.

As shown in figure 23, trimming of the engine by zeroing $\dot{\Omega}$, is done while in initial condition (I.C.) mode by setting flag ISTEADY after the rigid-body states have been trimmed. Pilot inputs, shown on the left side of the diagram, include: positions of the collective stick (δ_{Ω} is fed forward into the engine to compensate for rpm droop); N_{1} lever (compressor speed); and beep trim switches (torque may be adjusted on the left engine individually, or engine torque and rotor rpm may be adjusted on both engines simultaneously). Changes in beep trimmer and collective positions modify the fuel control actuator (N_{2}) command. The fuel control mechanism is modeled as a first-order system, with friction in the response represented by a deadband and by hysteresis. Unlimited commanded power is calculated, as shown in figure 31, as the difference between equivalent rotor $\mathrm{rpm}\left(\mathrm{N}_{\mathrm{R}}\right)$ and the fuel contrul actuator position $\left(N_{R_{k}}\right)$. The term $N_{R_{\phi}}$ provides the intercept of the unlimited commanded power curve, and the slope of the curve (M) is an empirically derived constant between engine fuel flow and engine power. Feedback of $N_{R}(\Omega)$ in the unlimited, commanded power calculation represents the governing loop of the engine, where engine power is modified to regulate variations in rotor rpm .

As shown in figures 23 and 31, the topping power level of the engine is a function of $N_{R}(\Omega)$ and the compressor speed (N_{1}). Three positions, STOP, GROUND, and FLY are available on the N_{1} lever; actuator motion between the positions is at a constant rate of $0.8 \mathrm{in} . / \mathrm{sec}$. Unlimited commanded power is then topped as a function of rotor rpm and compressor speed.

Gas generator dynamics are modeled as a first-order lag with a time constant and internal limiter, both of which are variable. The gas generator dynamics time constart is a function of power output, modified as a function of power error. The variable internal limiter adjusts for the engine, which powers down six times faster than it powers up, and is a function of power output.

The engine governor and rotor shaft dynamics, modeled as a third-order system (fig. 23), regulate rotor rpm. Inputs to the governor and shaft dynamics model are power available from each engine and power required for the accessories (hydraulic systems, transmission losses, etc.). As shown in the figure, this system is drivell by the difference between resistive torque (damping plus spring torque) and rotor torque
required. Rotor acceleration is the difeerence between shaft resistive torque and engine torque avallable. Engine citputs: rocu: rom (OMECA), spring torque

$$
\left\{\begin{array}{l}
\text { QGOVF } \\
\text { QGOVR }
\end{array}\right\}
$$

and rotor rpm uncorrected for helicopter yaw rate

$$
\left\{\begin{array}{l}
\text { OMEGPF } \\
\text { OMEGPR }
\end{array}\right\}
$$

are passed to the ROTOR subroutine.
Table 5 is a list of variables computed in the ENGINE subroutine, together with constants and conversion factors, and table 6 has ENGINE subroutine input/output variables, and logical flags.

Mechanical Controls

The purpose of the CONTROL subroutine is to represent the mechanical hardware between the cockpit controls and the rotor swashplate. A block diagram of the subroutine logic is shown in figure 32. Mechanical control system inputs are lateral cyclic ($\delta_{A_{P}}$), collective ($\delta_{C_{P}}$), longitudinal stick ($\delta_{\mathrm{B}_{\mathrm{P}}}$), and directional ($\delta_{\mathrm{R}_{\mathrm{P}}}$) cockpit control positions. The SAS and ECS actuator inputs from the respective subroutines, and selected with the flags shown in the figure, augment the appropriate cockpit control positions. Longitudinal cyclic position is also augmented by the differential-collective-pitch-trim (DCPT) actuator which (although this capability has been disconnected in the ARC helicopter) may be selected in the simulation model by setting flag IDCPT. The purpose of the DCPT actuator is to artificially provide a stable longitudinal stick position gradient with airspeed (fig. 33). To accomplish this, as a function of airspeed, the DCPT actuator automatically introduces a positive pitching moment (fig. 34), requiring the pilot to move the longitudinal stick forward to maintain trim (ref. 13).

After control-stop limiting (downstream of cockpit control-position limiting, which is not included in the diagram), control positicns are converted from inches to degrees of equivalent swashplate, resulting in $\theta_{A_{F}, R},{ }^{\theta}{ }_{C}, R,{ }^{\theta_{B}}{ }_{F}, R$, and ${ }^{O_{R}}{ }_{F}, R$
First-stage control mixing (longitudinal and vertical, lateral and directional) is followed by cumulative lateral stop limiting (of the authority of differential lateral and combined lateral inputs). Results of (vertical and lateral) secund-stage mixing, $\Theta_{\text {FSP }}, \Theta_{\text {FPP }}, \theta_{\text {RSP }}$, AND $\Theta_{\text {RPP }}$ are limited at the swashplate prior to driving the swiveling and pivoting upper-boost actuators. (In order that the swashplates move smoothly and not bind up, each is driven by a combination of swiveling and pivoting motions. Swashplate displacement is the sum of the two inputs.) The actuation dynamics are modeled as first-order lags, the outputs of which, $\theta_{0_{F, R}}^{\prime}{ }^{\text {and }}{ }^{A_{1}^{\prime}} C_{F, R}$, may be interpreted to be collective and lateral cyclic pitch angles represented in helicopter body axes, respectively.

As described in reference 4 , longitudinal cyclic pitch angle is scheduled with equivalent airspeed (fig. 34); actuation dynamics are modeled as a first-order lag.

Mechanical control-system outputs are rotor hub collective and cyclic positions

$$
\left\{\begin{array}{ll}
\text { AlCFRC, } & \text { AICRRS } \\
\text { BICFRC, } & \text { BICRRC } \\
\text { THOFRC, } & \text { THORRC }
\end{array}\right\}
$$

which are passed to the ROTOR subroutine. Table 7 is a summary of the variables used in the CONTROL subroutine; table 8 gives subroutine input/output variables and logical fiags.

Stability Augmentation System

The basic augmentation of the $\mathrm{CH}-47 \mathrm{~B}$ helicopter is modeled in the SAS subroutine. Rate damping only is implementer in longitudinal and lateral axes (figs. 35 and 36); the directional axis has turn coordination and $N_{\text {a }}$ stabilization in addition to rate damping (fig. 37). Figures 38 and 39 show the directional SAS nonlinearities in
detail.

The longitudinal SAS consists of pitch-rate feedback through cascaded first-order lag, lead-lag, and washout filters. The lateral SAS is comprised of a single firstorder lag applied to roll rate. In the N_{g} stabilization portion of the directional SAS, sideslip angle is calculated using the pressure difference between the static ports located on the nose of the aircraft. In an appendix to reference 4 it was determined that this pressure difference may be represented as in equation (57)

$$
\begin{equation*}
\Delta{\underset{\sim}{\text { static }}}^{\text {port }}=(1.1)\left(\frac{9}{4}\right) \sin (2 \gamma) \sin (2 \beta) q \tag{57}
\end{equation*}
$$

where $\gamma=$ the angle between longitudinal axis and the static port line (52) and $\mathrm{q}=$ the dynamic pressure $\left(=(1 / 2) \rho V_{e q}^{2}\right)$. The portion of the yaw SAS rudder input calculated to zero sideslip angle is given in equation (58) where $K_{\Delta_{P_{\delta R}}}$ is a velocitydependent gain whose purpose is to wash out this rudder input at high speeds (fig. 38).

$$
\begin{equation*}
\left.\operatorname{DRBYAW} \quad \delta_{R_{B}}\right|_{\substack{\text { equivalent } \\ \text { pedal }}}=\left(\Delta p \text { in } \cdot H_{2} \mathrm{O}\right)\left(K_{\Delta_{p_{\delta}}} \frac{\text { in. pedal }}{\text { in. } H_{2} O}\right) \tag{58}
\end{equation*}
$$

Directional SAS yaw damping uses simple filtering with, at $V_{e q}=40$ knots, a change from a first-order lag in cascade with a lead-lag to a first-order lag in cascade with a washout filter applied to yaw rate. Turn coordination is implemented with a fi $\because \mathrm{st}-$ order lag on helicopter roll rate. Computation of lie SAS filtering outputs uses subroutine FACT/UPDATE, designed to solve ordinary differential equations (ref. 14).

Augmentation in any or all of the three axes may be selected with switches located in the CONTROL subroutine, F1ags RSASQ, RSASP, and RSASR select the longitudinal, lateral, and directional SAS inputs, respectively.

SAS effectiveness may be demonstrated using dynamic response and stabilityderivative data. Figures $40-42$ show SAS off and on responses for each of the longitudinal, lateral, and directional axes in hover. Figures 43-45 and 46-48 give similar results $\mathrm{for} \mathrm{V}_{\mathrm{eq}}=75$ and 130 knots, respectively. More complete static and dynamic
model data may be found in volume II of this report, which gives the validation results. Included therein are static trim and stability derivative data as well as a summary of dynamic check results.

Table 9 is a list of the SAS subroutine variables together with constants and conversion factors. Included is each variable, its FORTRAN mnemonic, its units, its common location if applicable, and its physical description. Table 10 is a list of the variables transferred between SAS and other subroutines.

Electronic Control System

Using the ECS of the CH-47B, a researcher may either implement an experimental control system or, by designing explicit model-following laws, exercise the helicopter's variable-stability capability. The ECS subroutine is a model of this system; subroutine inputs are the research pilot's cockpit control positions and the outputs are ECS signals sent to the mechanical controls subroutine, CONTROL. No specific ECS is documented in this report. It is anticipated that a particular ECS design will be developed along with an individual experiment, and will be documented at that time. However, during model validation, some simple procedures were developed which aid in properly linking the ECS to the rest of the model. A discussion of these follows.

Prior to engaging the ECS (with flag IECSCON in subroutine CONTROL), the helicopter is trimned using the basic airframe and mechanical control system. In this case, the SAS must be turned off before trimming, since SAS inputs alter the cockpit control positions for trim.

When the ECS is engaged the helicopter is flown by the research pilct; therefore, in the simulation the safety pilot's inputs to the mechanical control system are disconnected as the ECS is turned on (see the CONTROL schematic, fig. 32). To avoid destroying the trimmed condition of the helicopter when the safety pilot's controls are disconnected, each trim cockpit control position is used as a bias which is added to the appropriate ECS input (which is zero at trim, by definition); this is shown in equations (59)-(62).

$$
\begin{align*}
& \text { DI.ATTOT }=\text { DLATECS }+ \text { DATOTIC } \tag{59}\\
& \text { DLONTOT }=\text { DLONECS + DBTOTIC } \tag{60}\\
& \text { DYAWTOT }=\text { DYANECS + DRTOTIC } \tag{61}\\
& \text { DCOLTOT }=\text { DCOLECS + DCTTTIC } \tag{62}
\end{align*}
$$

where

$$
\left\{\begin{array}{c}
\text { DATOTIC } \\
\text { DBTOTIC } \\
\text { DRTOTIC } \\
\text { DCTOTIC }
\end{array}\right\}=\left.\left\{\begin{array}{l}
\text { DLATP } \\
\text { DLONP } \\
\text { DYAWP } \\
\text { DCOLP }
\end{array}\right\}\right|_{\text {trim }}
$$

Table 11 gives the ECS subroutine input/output variable definition

Subroutine SLING models a baseline, externally suspended load in three degrees of freedom. This is accomplished by introducing three new state variables, each defined as a relative displacement of the load and helicopter Lody reference frames. Additionally, terms which represent the effect of the slung load motion on the helicopter response are computed and passed to suoroutine SMART. Simulation of the slung-load dynamics is optional and may be selected with flag ISIJING.

Figure 49 (taken from ref. l) illustrates the geometry of the slung load, its attachment, and position relative to the helicopter. The baseline load data, which are included in the simulation model, is a "MIL-VAN" weighing 7500 lb . It is suspended ol cables from tandem attachment points on the fuselage equally spaced about the helicopterc.g. It has been assumed that these attachment points may transmit no moments between the load and the helicopter. Referring to the figure: μ_{L}, λ_{L}, and ν_{L} are defined to be the longitudinal and lateral cable sway angles and the lateral differential cable angle, respectively.

To compute slung-load aerodynamic quantities, velocities in the halicopter body reference frame at the slung-load c.g. are computed via equations (63)-(6). .

$$
\begin{align*}
& \text { USL } u_{S L}=u_{B}+\left(L_{L}+R_{L}\right) q_{B}+L_{L} \dot{\mu}_{L} \tag{53}\\
& \text { VSL } \quad v_{S L}=v_{B}-\left(L_{L}+R_{L}\right) p_{B}-L_{L} \dot{\lambda}_{I} \tag{64}\\
& \text { WSL } \quad w_{S L}=w_{B} \tag{65}
\end{align*}
$$

Slung-load dynamic pressure, sideslip angle, and angle of attack, respectively, are computed in equations (66)-(68).

$$
\begin{align*}
& \text { SQSL } \quad q_{S L}=\frac{1}{2} \rho\left(u_{S L}^{2}+v_{S L}^{2}+w_{S L}^{2}\right)^{1 / 2} \tag{66}\\
& \text { BETSL } \quad{ }_{S S L}=\arctan \left(\frac{{ }_{S S L}}{v_{S L}}\right)-v_{L} \tag{67}\\
& \text { ALFSL } \quad \alpha_{S L}=\arctan \left(\frac{w_{S L}}{u_{S L}}\right)+\theta_{S L} \tag{68}
\end{align*}
$$

Slung-load drag, sideforce, and yawing moment, respectively, are found frum figures 50-52 as a functicn of load angle of attack and sideslip angle. These data, normalized in the simulation model by load dynamic pressure, are taken from windtunnel tests. Prior to their use in the cable angle calculations, the load aerodynamic quantities are scouived inte the helicopter body reference frame, as in equations (69)-(71).

$$
\begin{equation*}
\text { XAERSL } X_{A E R}=-q_{S L}\left[\left(\frac{D}{q}\right)_{S L} \cos v_{L}+\left(\frac{\mathrm{Y}}{q}\right)_{S L} \sin v_{L}\right] \tag{69}
\end{equation*}
$$

URIGINAR FAEC:
of POOR QUAKi:

$$
\begin{array}{ll}
\text { YAERSL } & Y_{A E R}=q_{\text {SL }}\left[\left(\frac{\gamma}{q}\right)_{S L} \cos v_{L}-\left(\frac{D}{q}\right)_{S I} \sin v_{1}\right] \\
\text { ANARSL } & N_{A E R}=q_{S L}\left(\frac{N}{q}\right)_{S L} \tag{71}
\end{array}
$$

Using $X_{A E R_{L}}, \mathrm{Y}_{A E R_{L}}$, and $\mathrm{N}_{\mathrm{AER}}^{\mathrm{L}}$, as inputs, suspension-cable angular accelerations are computed with the nonlinear second-order differential equations (72)-(74), from reference 1 .

$$
\begin{align*}
& \text { AMULID } \quad \ddot{u}_{L}=\frac{\mathrm{X}_{\text {AER }_{L}}}{m_{L} L_{L}}-\frac{\dot{u}_{B}}{\mathrm{~L}_{\mathrm{L}}}-\left(\frac{\mathrm{L}_{\mathrm{L}}+\mathrm{R}_{\mathrm{L}}}{\mathrm{~L}_{\mathrm{L}}}\right) \dot{\mathrm{q}}_{\mathrm{B}}+\left(\frac{\mathrm{J}_{\mathrm{L}}}{m_{L} \mathrm{~L}_{\mathrm{L}}^{2}}-\frac{\mathrm{L}_{\mathrm{L}}+R_{\mathrm{L}}}{\mathrm{~L}_{\mathrm{L}}}\right) r p \\
& -r_{B} \dot{\lambda}_{L}+\frac{r_{B} v_{B}}{L_{L}}-\bar{K}_{L} \frac{\bar{L}_{L}}{}\left(\sin \theta+\sin \mu_{L}\right)-K_{\dot{\mu}^{\dot{H}}} \tag{72}
\end{align*}
$$

where

$$
\begin{gather*}
\tilde{K}_{L}=\frac{\left[\left(m_{L} g\right)^{2}+x_{A E R_{L}}^{2}\right]^{1 / 2}}{m_{L} g} \\
\text { ALMLDD } \ddot{\lambda}_{L}=\frac{-Y_{A E R_{L}}}{m_{L} L_{L}}+\frac{\dot{v}_{B}}{L_{L}}-\left(\frac{L_{L}+R_{L}}{L_{L}}\right) \dot{P}_{B}-\left(\frac{J_{L}}{m_{L} L_{L}^{2}}-\frac{L_{L}+R_{L}}{L_{L}}\right) r_{B} q_{B}-\frac{J_{L}}{m_{L} L_{L}} q_{B} \dot{v}_{L} \\
 \tag{73}\\
+r_{B} \dot{H}_{L}+\frac{r_{B} u_{B}}{L_{L}}-\frac{q}{L_{L}}\left(\sin \phi+\sin \lambda_{L}\right)-K_{\dot{\lambda}} \dot{\lambda}_{L} \tag{74}\\
\text { ANULDD } \quad \ddot{v}_{L}= \\
N_{A E R_{L}}^{J_{L}}-\dot{r}_{B}-\frac{m_{L} g a_{L}^{2}}{4 J_{L} L_{L}} \cos \theta \cos \phi v_{L}-K_{\dot{V}} \dot{v}_{L}
\end{gather*}
$$

(During model validation, the value of $\mathrm{K}_{\dot{v}}$ was changed from the original value of +1.8 to -0.03 to match BV dynamic-response data.)

Integration results in cable angular velocities as in equations (75)-(77):

$$
\begin{align*}
& \text { AMULD } \dot{u}_{\mathrm{L}}=\int \ddot{u}_{\mathrm{L}} d t \tag{75}\\
& \text { ALMLD } \dot{\lambda}_{\mathrm{L}}=\int \ddot{\lambda}_{\mathrm{L}} d t \tag{76}\\
& \text { ANULD } \dot{\dot{x}}_{\mathrm{L}}=\int \ddot{\mathrm{v}}_{\mathrm{L}} d t \tag{77}
\end{align*}
$$

and cable positions as in equations (78)-(80):

$$
\begin{align*}
& \text { AMUL }{{ }^{L}}^{L}=\int \dot{\mu}_{\mathrm{I}} d t \tag{78}\\
& \text { ALML } \lambda_{L}=\int \dot{\lambda}_{L} d t \tag{79}\\
& \text { ANUL } v_{L}=\int \dot{v}_{L} d t \tag{80}
\end{align*}
$$

At a straight and level flight condition, values of μ_{L}, λ_{L}, and v_{L} may be found by solving equations (72), (73), and (74) at steady state. Resulting trim values are given in equations (81)-(83).

$$
\begin{align*}
& \text { AMULIC } \mu_{L_{\text {I.C. }}}=\sin ^{-1}\left[-\sin \theta+\frac{\mathrm{X}_{\mathrm{AER}_{\mathrm{L}}}}{\overline{\mathrm{~K}}_{\mathrm{L}} g \mathrm{Im}_{\mathrm{L}}}\right] \tag{81}\\
& \text { ALMLIC } \tag{82}\\
& \lambda_{\mathrm{L}_{\text {I.C. }}}=-\phi \tag{83}\\
& \text { ANULIC } \\
& v_{L_{\text {I.C. }}}=0
\end{align*}
$$

where I.C. represents the initiai flight condition. By selecting flag LSLTRM, initial values of the slung-load states are computed at the same time that the helicopter is being trimmed.

In the criginal BV simulation model, the helicopter and slung load were modeled together as a coupled nine degree-ofmfreedom system. However, since subroutine SMART was aesigned to handle only six degrees of freedon, the ARC model is somewhat modified from the original. Equations (84)-(89) are the nine degree-of-freedom helicopter equations of motion in the helicopter body reference frame (ref. 1), where the underlined terms are those which arise specifically from the slung load.

$$
\begin{equation*}
\dot{u}_{B}=\frac{X_{A E R O}}{M_{H}}-q_{B} w_{B}-g \sin 0+r_{B} v_{B}-\frac{m_{L}}{M_{H}}\left(q_{B} w_{B}-\bar{K}_{L} g \sin \mu_{L}\right)-\frac{J_{L}}{L_{L} M_{H}} r_{B} p_{B} \tag{84}
\end{equation*}
$$

$$
\begin{equation*}
\dot{v}_{B}=\frac{Y_{A E R O}}{M_{H}}+g \sin \phi \cos \theta+p_{B} w_{B}-r_{B} u_{B}+\frac{m_{L}}{M_{H}} p_{B} w_{B}-\frac{J_{L}}{L_{L} M_{H}}\left(r_{B} q_{B}+q_{B} \dot{v}_{L}\right)-\frac{m_{L}}{M_{H}} g \sin \lambda_{L} \tag{85}
\end{equation*}
$$

$$
\begin{align*}
\dot{w}_{B}= & \frac{Z_{A E R O}}{\left(m_{L}+M_{H}\right)}+g \cos \phi \cos 0+q_{B} u_{B}-p_{B} v_{B}+\frac{m_{L}\left(L_{L}+R_{L}\right)}{\left(m_{L}+M_{H}\right)}\left(q_{B}^{2}+p_{B}^{2}\right) \\
& +\frac{M_{L} L_{L}}{\left(m_{L}+M_{H}\right)}\left(p_{B} \dot{\lambda}_{L}+q_{B} \dot{\mu}_{L}\right) \tag{86}
\end{align*}
$$

$$
\begin{align*}
& \text { ORIN: } \\
& \text { OF POUA GUALiv: } \\
& \dot{q}_{B}=\frac{M_{A E R O}}{I_{y y}}+\frac{I_{x z}}{I_{y y}}\left(r_{B}^{2}-p_{B}^{2}\right)+\left(\frac{I_{z z}-I_{x x}}{I_{y y}}\right) r_{B} p_{B}-\frac{R_{L}{ }_{L}}{L_{L} I_{y y}} r_{B} p_{B}-\frac{m_{L} g R_{L}}{I_{y y}} \tilde{j}_{L} \mu_{L} \tag{87}\\
& \dot{p}_{B}=\left\{L_{L_{A E R O} I_{z z}}+N_{A E R O}{ }_{x z}+P_{B} q_{B} I_{x z}\left(I_{x x}-I_{y y}+I_{z z}\right)+r_{B} q_{B}\left(I_{z z}\left(I_{y y}-I_{z z}\right)-I_{x z}^{2} \mid\right.\right. \\
& +\left(\underline{\left.\left(\frac{R_{L} J_{L} I_{z z}}{L_{L}}\right)\left(r_{B} q_{B}+q_{B} \dot{\nu}_{L}\right)+\underline{\frac{m_{L} g a_{L}^{2}}{4 L_{L}} I_{x z} \cos \phi \cos \theta v_{L}+m_{L} g R_{L} I_{z z} \lambda_{I}}\right\} /\left(I_{x x} I_{z z}-I_{x z}^{2}\right), ~}\right. \\
& \dot{r}_{B}=\left\{N_{A E R O} I_{x x}+L_{A E R O} I_{x z}+p_{B} q_{B}\left(I_{x x}^{2}-I_{x x} I_{y y}+I_{x z}^{2}\right)+r_{B} q_{B}\left[I_{x z}\left(I_{y y}-I_{x x}-I_{z z}\right)\right]\right. \tag{88}\\
& +\underline{m^{\frac{m_{L} g a_{L}^{2}}{4 L_{L}} I_{x x} \cos \theta \cos \phi \nu_{L}}+\underbrace{\frac{R_{L} J_{L} I_{x z}}{L_{L}}}\left(r_{B} q_{B}+q_{B} \dot{\nu}_{L}\right)+m_{L} q R_{L} I_{x z} \lambda_{I}\} /\left(I_{x x} I_{z z}-1_{x z}^{2}\right)} \tag{8y}
\end{align*}
$$

The underlined portions of the above equations are designated as the slung-1oad contributions to the helicopter body reference frame accelerations and are given in equations (90)-(95).

$$
\begin{align*}
& \text { UBDS } \quad \dot{u}_{B}=\frac{-m_{L}}{M_{H}}\left(q_{B} w_{B}-\bar{K}_{L} g \sin \mu_{L}\right)-\frac{J_{L}}{L_{L} M_{H}} r_{B} p_{B} \tag{90}\\
& \text { VBDS } \quad \dot{v}_{B}=\frac{-m_{L}}{M_{H}} p_{B} w_{B}-\frac{J_{L}}{L_{L}{ }^{M_{H}}}\left(r_{B} g_{B}+q_{B} \dot{\dot{L}}_{L}\right)-\frac{m_{L}}{M_{H}} g \sin \lambda_{L} \tag{91}\\
& \text { WBDS } \dot{w}_{B_{S}}=\frac{m_{L}\left(L_{L}+R_{L}\right)}{\left(m_{L}+m_{H}\right)}\left(q_{B}^{2}+p_{B}^{2}\right)+\frac{m_{L} L_{L}}{\left(m_{L}+M_{H}\right)}\left(p_{B} \dot{\lambda}_{L}+q_{B} \dot{\mu}_{L}\right) \tag{92}\\
& \text { QBDS } \quad \dot{q}_{B_{S}}=\frac{-R_{L} J_{L}}{L_{L}{ }_{L}{ }_{y y}} r_{B} p_{B}+\frac{m_{L} g R_{L}}{I_{y y}} \bar{K}_{L} \mu_{L} \tag{93}\\
& \text { PBDS } \quad \dot{p}_{B_{S}}=\left\{\left(\frac{R_{L} J_{L} I_{z Z}}{L_{L}}\right)\left(q_{B} r_{B}+q_{B} \dot{v}_{L}\right)+\frac{m_{L} g a_{L}^{2}}{4 L_{L}} I_{x z} \cos \phi \cos \theta v_{I}\right. \\
& \left.+m_{L} g R_{L} I_{z z} \lambda_{L}\right\} /\left(I_{x x} J_{z z}-I_{x z}^{2}\right) \tag{94}\\
& \text { FBDS } \quad \dot{r}_{B_{S}}=\left\{\frac{m_{L} g a_{L}^{2}}{4 L_{L}} I_{x x} \cos \theta \cos \phi \nu_{L}+\frac{R_{L}{ }^{J} L^{I}{ }_{x z}}{L_{L}}\left(r_{B}{ }^{4}{ }_{B}+q_{B} \dot{\dot{b}}_{L}\right)\right. \\
& \left.+m_{L} g R_{L} I_{x z}{ }^{\lambda} l^{\prime}\right\} /\left(I_{x x} I_{z z}-I_{x z}^{2}\right) \tag{95}
\end{align*}
$$

These contributions are added directly to the helicopter body reference frame acceleration calculations in SMART. By executing SMART immediately prior to SLING, the states are calculated in the same order as in the original BV mode..

Table 12 gives the SLING subroutine variable definition; table 13 is a list of subroutine input/output variables and logical flags.

OPERATIONAL CONSIDERATIONS

Real-time piloted simulation using a simulator cab and visual display requires the constant input information described in table 14.

Additionally, in order that a pilot may land the helicopter model, a simple gear model has been devised. The landing gear subroutine is nct actually executed; rather, subroutine BIAND has been modified so that the ground is contacted artificially (i.e., the gear reaction force is prescribed to be equal to the aircraft weight) and no reactive moments are calculated).

CONCLUSIONS

A mathematical simulation model of the ARC $\mathrm{CH}-47 \mathrm{~B}$ helicopter has been purchased from the Boeing Vertol Company and implemented on the ARC Sigma IX computer. Volume I of this report includes engineering explanations of each nodel subroutine; also given are the appropriate assumptions and simplifications necessary to ensure the validity of a particular experiment.

Volume II of this report gives a comparison among $A R C$ and $B V$ model dynamic response data and flight test data, together with ARC static-trim and stabilityderivative data. Successful validation of the ARC model has been completed against BV model data. As with all mathematical models of physical systems, however, this model is not a perfect replication of the $\mathrm{CH}-47 \mathrm{~B}$ helicopter. This is particularly true with a quasi-steady rotor dynamics midel, the type implemented herein. To represent specific aspects of the helicopter response more closely and to meet the needs of a particular simulation experiment, it may be desirable to modify the model described in this report.

APPENDIX A: FLAPPING AND CONING EQUATIONS

Using Wheatley-Bailey theory (refs. 6 and 7), flapping and coning angles are computed in the shaft-normal-plane-wind reference frame. Due to pitch-flap coupling (δ_{3}), the solution for coning and flapping angles (a_{0}, a_{2}, b_{1}) is coupled with the definition of swashplate cyclic and collective pitch angles ($A_{1}, B_{1_{1}}, O_{0}$), as shown in equations (Al)-(A7). Additionally, coning angle is a function of rotor thrust, defined in equation (Al).

$$
\begin{align*}
& \begin{array}{l}
\operatorname{AOFR} \\
\operatorname{AORR}
\end{array} \quad a_{0}=\left(\frac{\rho a c R_{B}^{4}}{12 I}\right)\left[4\left(\frac{2 C_{T}}{a \sigma}\right)+\frac{0_{0}}{6}+\frac{0^{\prime} t w}{5}+\frac{\mu^{2} O_{0}}{2}\right] \tag{Al}\\
& \underset{\operatorname{AlFR}}{\operatorname{AlR}} \quad a_{1}=\frac{4}{1-\left(\mu^{2} / 2\right)}\left[\left(\frac{\lambda}{2}+\frac{2 \theta_{0}}{3}+\frac{\theta_{t w}}{2}-\frac{3 \mu B_{1}}{8}\right)-\frac{B_{1_{C}}}{4}\right]-\frac{16 \varphi_{F, R}\left[1+\left(\mu^{2} / 2\right)\right]}{\left(\rho a c R_{B}^{4} \Omega\right) / I_{F}, R} \tag{A2}\\
& \underset{\operatorname{B2RR}}{\operatorname{B2FR}} \quad b_{1}=\frac{4 \mu a_{0}}{3\left[1+\left(\mu^{2} / 2\right)\right]}+A_{1_{c}}-\frac{16 p_{F, R}\left[1-\left(\mu^{2} / 2\right)\right]}{\left(\mathrm{acR}_{B}^{4} \Omega\right) / I_{F, R}}
\end{align*}
$$

where

$$
\begin{align*}
& \operatorname{AICFR} \quad A_{1_{C}}=A_{1_{C_{2}}}+K_{\beta} a_{1} \tag{A4}\\
& \text { BICFR } \\
& \operatorname{BICRR} \quad B_{1_{C}}=B 1_{C_{2}}+K_{B} b_{1} \tag{A5}\\
& \underset{\operatorname{THORR}}{\operatorname{THOFR}} \quad \theta_{\theta}=\theta_{0}^{\prime}+K_{\beta} a_{0} \tag{A6}\\
& \begin{array}{l}
\operatorname{CTFR1} 1 \\
\text { CTRR1 }
\end{array} \frac{2 C_{T}}{\mathrm{a} \sigma}=\frac{\lambda}{2}+\frac{\theta_{0}}{3}+\frac{\theta_{\mathrm{tw}}}{4}+\mu\left[\left(\frac{\theta_{0}}{2}+\frac{0_{\mathrm{tw}}}{4}\right)-\frac{\mathrm{B}_{1}}{2}\right] \tag{A7}
\end{align*}
$$

The purpose of this appendix is to provide the algebraic steps necessary t n decouple these equations, eventually resulting in the model equation (18), iv.lionina, is the step by step decoupling of the equations, reproduced from reference 4.

1. Substituting for $\left(2 \mathrm{C}_{\mathrm{T}} / \mathrm{a} \sigma\right)$ in the a_{0} equation:

$$
\begin{align*}
& a_{0}=\left(\frac{\rho \mathrm{acR}_{\mathrm{B}}^{4}}{12 \mathrm{I}_{\mathrm{F}, \mathrm{R}}}\right)\left(4\left\{\frac{\lambda}{2}+\frac{O_{0}}{3}+\frac{0_{\mathrm{tw}}}{4}+\mu\left[\mu\left(\frac{0}{2}+\frac{\mathrm{O}_{\mathrm{tw}}}{4}\right)-\frac{\left.\mathrm{B}_{1_{1}}\right]}{2}\right]\right\}+\frac{\theta_{0}}{6}+\frac{\mathrm{O}_{\mathrm{tw}}}{5}-\frac{\mu^{2} O_{0}}{2}\right) \tag{A8}\\
& a_{0}=\left(\frac{\rho a c R_{B}^{4}}{12 I_{F, R}}\right)\left(2 \lambda+\frac{4 \theta_{0}}{3}+\theta_{t W}+2 \mu^{2} \theta_{0}+\mu^{2} O_{t w}-2 \mu B_{]_{c}}+\frac{O_{0}}{6}+\frac{\theta_{t w}}{5}-\mu^{2} \frac{\theta_{0}}{2}\right) \tag{A9}\\
& a_{0}=\left(\frac{\rho a c R_{B}^{4}}{12 I_{F, R}}\right)\left[0\left(\frac{4}{3}+2 \mu^{2}+\frac{1}{6}-\frac{\mu^{2}}{2}\right)-2 \mu B_{I_{c}}+2 \lambda+O_{t w}\left(\frac{6}{5}+\mu^{2}\right)\right] \tag{A10}
\end{align*}
$$

2. Substituting for 0_{0} and $B_{1_{C}}$:

$$
\begin{align*}
& \left(\frac{12 I_{F}, R}{\rho a c R_{B}^{4}}\right) a_{0}=\left(0_{0}^{\prime}+K_{B} a_{0}\right)\left(\frac{3}{2}+\frac{3}{2} \mu^{2}\right)-2 \mu\left(B_{c_{C_{2}}^{\prime}}^{\prime}+K_{B} b_{2}\right)+2 \lambda+\theta_{t w}\left(\frac{6}{5}+\mu^{2}\right) \tag{All}\\
& a_{0}\left[\frac{12 I_{F}, R}{-a c R_{B}^{4}}-K_{6}\left(\frac{3}{2}+\frac{3}{2} \mu^{2}\right)\right]+a_{1}(0.0)+b_{1}\left(2 \mu K_{G}\right) \\
& \underbrace{}_{B} \quad \underbrace{}_{C} \\
& =\underbrace{u_{0}^{\prime}\left(\frac{3}{2}+\frac{3}{2} \mu^{\prime 2}\right)-2 \mu B_{c_{2}}^{\prime}+2 \lambda+0_{t w}\left(\frac{6}{5}+\mu^{i}\right)}_{J} \tag{A12}
\end{align*}
$$

3. After defining coefficients as indicated above, the equation has the form:

$$
\begin{equation*}
\mathrm{Aa}_{0}+\mathrm{Ba}{ }_{1}+\mathrm{Cb}=\mathrm{J} \tag{Al}
\end{equation*}
$$

4. Rearranging the a_{1} equation:

$$
\begin{equation*}
\left(\frac{1}{4}-\frac{\mu^{2}}{8}\right) a_{1}=\frac{\mu \lambda}{2}+\frac{2 \mu O_{0}}{3}+\frac{\mu C_{w}}{2}-\frac{3 \mu^{2} B_{1_{C}}}{8}-\frac{B_{1_{C}}}{4}-\frac{16 q_{F, R}\left[1+\left(\mu^{2} / 2\right)\right]\left[(1 / 4)-\left(\mu^{2} / 8\right)\right]}{\left(\operatorname{pacR}_{B}^{4}\right) / I_{F, R}} \tag{A14}
\end{equation*}
$$

5. Substituting for 0_{0} and $B_{I_{6}}$:

$$
\begin{align*}
& \left(\frac{1}{4}-\frac{\mu^{2}}{8}\right) a_{1}=\left(0_{0}^{\prime}+K_{\beta} a_{0}\right) \frac{2 \mu}{3}-\left(B{\underset{c}{c_{2}}}+K_{\beta} b_{3}\right)\left(\frac{1}{4}+\frac{3 \mu^{2}}{8}\right) \\
& +\frac{\mu \lambda}{2}+\frac{\mu 0}{2} \underline{w}-\frac{16 q_{F, R}\left[1+\left(\mu^{2} / 2\right)\right]\left[(1 / 4)-\left(\mu^{2} / 8\right)\right]}{\left(\operatorname{\rho acR}_{B}^{4} \Omega \Omega\right) / I_{F, R}} \tag{A15}\\
& a_{0} \underbrace{\left(-\frac{2}{3} K_{B}{ }^{\mu}\right)}_{D}+a_{1} \underbrace{\left(\frac{1}{4}-\frac{\mu^{2}}{8}\right)}_{\mathrm{E}}+b_{B}\left[K_{B}\left(\frac{1}{4}+\frac{3 \mu^{2}}{8}\right)\right] \\
& =\underbrace{\frac{2 \mu 0_{0}^{\prime}}{3}-\mathrm{Bl}_{\mathrm{c}_{2}}^{\prime}\left(\frac{1}{4}+\frac{3 \mu^{2}}{8}\right)+\frac{\mu \lambda}{2}+\frac{\mu \mathrm{O}_{\mathrm{tW}}}{2}-\frac{16 \mathrm{q}_{\mathrm{F}, \mathrm{R}}\left[1+\left(\mu^{2} / 2\right)\right]\left[(1 / 4)-\left(\mu^{2} / 8\right)\right]}{\left(\mathrm{\rho acR}_{\mathrm{B}} \mathrm{\Omega}\right) / \mathrm{I}_{\mathrm{F}, \mathrm{R}}}}_{\mathrm{K}} \tag{Al}
\end{align*}
$$

6. The definition of the above coefficients results in the form of equat.1on (Al7):

$$
\begin{equation*}
\mathrm{Da}_{0}+\mathrm{Ea}_{1}+\mathrm{Fb} \mathrm{~F}_{1}=\mathrm{K} \tag{A17}
\end{equation*}
$$

7. Substituting for $A_{1_{c}}$ in the b_{1} equation:

$$
\begin{align*}
& b_{1}=\frac{4 \mu a_{0}}{3\left[1+\left(\mu^{2} / 2\right)\right]}+A_{1_{C_{2}}}^{\prime}+K_{B} a_{1}-\frac{16 p_{F, R}\left[1-\left(\mu^{2} / 2\right)\right]}{\left(\rho a c R_{B}^{4} \Omega\right) / I_{F, R}} \tag{Al8}\\
& \underbrace{\mathrm{a}_{0} \frac{-4 \mu}{3\left[1+\left(\mu^{2} / 2\right)\right]}}_{\mathrm{G}}+\mathrm{a}_{1}\left(-\mathrm{K}_{B}\right)+\mathrm{b}_{1}(1.0)=\mathrm{A}_{\mathrm{H}}^{\prime} \underbrace{}_{\mathrm{C}} \underbrace{}_{\mathrm{L}}-\frac{16 \mathrm{P}_{\mathrm{F}, \mathrm{R}}\left[1-\left(\mu^{2} / 2\right)\right]}{\left(\rho a c R_{B}^{4} \Omega\right) / I_{F, R}}) \tag{A19}
\end{align*}
$$

8. After the above definitions, the equation has the form:

$$
\begin{equation*}
\mathrm{Ga}_{0}+\mathrm{Ha}_{1}+\mathrm{Ib} \mathrm{~b}_{1}=\mathrm{L} \tag{A20}
\end{equation*}
$$

As discussed in the text, equations (A13), (A17), and (A20), which are the same as the text matrix equation (18), are solved for a_{0}, a_{1}, and b_{1}.

APPENDIX B: INFLOW DYNAMICS SOLUTION

In the original version of the model (developed by Boeing Vertol Company) from which this model was adapted, the inflow ratio was modeled by the equation (Bl) expression, including a fjrst-order lag (ref. 1). Past cycle values of $C_{T} \mathrm{C}_{\mathrm{F}, \mathrm{R}}, \lambda \mathrm{F}, \mathrm{R}$, and $\mu_{F, R}$ were used, so no iteration on the current value of $\mu_{F, R}$ was performed using this implementation.

$$
\begin{equation*}
\underset{\operatorname{ALAMRR}}{\operatorname{ALAMFR}} \lambda_{\mathrm{F}, \mathrm{R}}=\lambda_{\mathrm{F}, \mathrm{R}}^{\prime}-\left[\frac{\mathrm{C}_{\mathrm{T}_{\mathrm{F}, \mathrm{R}}}}{2\left(\mu_{\mathrm{F}, \mathrm{R}}^{2}+\lambda_{\mathrm{F}, \mathrm{R}}^{2}\right)^{1 / 2}}+\frac{\left.\mathrm{D}_{\mathrm{F}}{ }_{\mathrm{RF}(\mathrm{FR})^{C_{\mathrm{T}}}{ }_{\mathrm{R}, \mathrm{~F}}}^{2\left(\mu_{\mathrm{R}, \mathrm{~F}}^{2}+\lambda_{\mathrm{R}, \mathrm{~F}}^{2}\right)^{1 / 2}}\right]\left[\frac{1}{\lambda_{\mathrm{F}, \mathrm{R}}+\mathrm{l}}\right]}{]}\right. \tag{B1}
\end{equation*}
$$

where

$$
\lambda_{F, R}^{\prime}=\frac{w_{F, R}}{R_{B}{ }_{F, R}\left(\Omega_{F, R}^{\prime}-r_{F, R}\right)}=\frac{w_{F, R}}{R_{B_{F, R}} \Omega_{F, R}}
$$

as defined in model equation (12).
A more exact real-time solution was obtained by Boris Voh, who represented the above as a differential equation and solved it using a local linearization method implemented as subroutine LOLIN (ref. 12). Following is the solution method, using the forward rotor equation as an example:

$$
\begin{align*}
& \lambda_{F}=\frac{{ }_{W}}{R_{B_{F}}{ }^{\Omega} F}-\left[\frac{C_{T_{F}}}{2\left(\mu_{F}^{2}+\lambda_{F}^{2}\right)^{1 / 2}}+\frac{{ }^{D_{F}}{ }_{R F} T_{R}}{2\left(\mu_{R}^{2}+\lambda_{R}^{2}\right)^{1 / 2}}\right]\left[\frac{1}{{ }^{7} \lambda_{F}+1}\right] \tag{B2}\\
& \lambda_{F}\left(\tau_{\lambda} s+1\right)=\frac{w_{F}}{R_{B_{F}}{ }^{2}{ }_{F}}\left(\tau_{\lambda_{F}} s+1\right)-\left[\frac{{ }^{C_{T}} T_{F}}{2\left(\mu_{F}^{2}+\lambda_{F}^{2}\right)^{1 / 2}}+\frac{{ }^{D_{F}}{ }_{R F}{ }^{C_{T}} T_{R}}{2\left(\mu_{R}^{2}+\lambda_{R}^{2}\right)^{1 / 2}}\right] \tag{B3}\\
& { }^{\tau} \lambda_{F} \dot{\lambda}_{F}+\lambda_{F}=\frac{{ }^{\tau} \lambda_{F}}{R_{B}{ }_{F}{ }^{\Omega} F} \dot{w}_{F}+\frac{{ }^{W_{F}}}{R_{B_{F}}{ }^{\Omega} F}-\frac{{ }^{C_{T}}}{2\left(\mu_{F}\right.}+\frac{\left.\lambda_{F}^{2}\right)^{1 / 2}}{}-\frac{D_{F_{R F}} C_{T_{R}}}{2\left(\mu_{R}^{2}+\lambda_{R}^{2}\right)^{1 / 2}} \tag{B4}\\
& \dot{\lambda}_{F}=\frac{\dot{w}_{F}}{R_{B_{F}}{ }^{\Omega} F}-\frac{1}{{ }^{\tau} \lambda_{F}}\left[i_{F}-\frac{w_{F}}{R_{B}{ }_{F}{ }^{\Omega} F}+\frac{C_{T}}{2\left(\mu_{F}^{2}+\lambda_{F}^{2}\right)^{1 / 2}}+\frac{D_{F_{R F}} C_{T_{R}}}{2\left(\mu_{R}^{2}+\lambda_{R}^{2}\right)^{1 / 2}}\right] \tag{B5}
\end{align*}
$$

Following are the definitions necessary for the application of LOLIN to this problem:

ORIC
OF FO. .

where

$$
\left[\begin{array}{l}
i_{\mathrm{P}} \\
\vdots_{\mathrm{R}}
\end{array}\right]
$$

is defined above in equation (B5), the time derivative of the function,

$$
\left[\begin{array}{c}
\ddot{{ }_{\lambda}} \\
\mathrm{F} \\
\ddot{\lambda} \\
\mathrm{~F}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

and the four elements of the Jacobian may be calculated as in equations (B6)-(B9):

$$
\begin{gather*}
\frac{\partial \dot{\lambda}_{F}}{\partial \lambda_{F}}=-\frac{1}{{ }^{\tau} \lambda_{F}}\left[1+\frac{a_{F} \sigma_{F}}{8\left(\mu_{F}^{2}+\lambda_{F}^{2}\right)^{1 / 2}}-\frac{C_{T_{F}} \lambda_{F}}{2\left(\mu_{F}^{2}+\lambda_{F}^{2}\right)^{3 / 2}}\right] \tag{B6}\\
\frac{\partial \dot{\lambda}_{F}}{\partial \lambda_{R}}=-\frac{1}{{ }^{\tau} \lambda_{F}}\left[\frac{{ }_{T}{ }_{R}\left(\partial D_{F_{R F}} / \partial \lambda_{R}\right)}{2\left(\mu_{R}^{2}+\lambda_{R}^{2}\right)^{1 / 2}}+\frac{a D_{F_{R F}}}{8\left(\mu_{R}^{2}+\lambda_{R}^{2}\right)^{1 / 2}}-\frac{D_{F_{R F}}{ }^{C_{T}}{ }_{R} \lambda_{R}}{2\left(\mu_{R}^{2}+\lambda_{R}^{2}\right)^{3 / 2}}\right] \tag{B7}
\end{gather*}
$$

where

$$
\frac{{ }^{\partial D_{F_{F F}}}}{\partial \lambda_{R}}=\frac{\left(1-\left|\sin \beta_{F U S}\right|\right) \Delta d_{F_{R F}}^{\prime}}{\Delta T-\left(\lambda_{R} / \mu_{R}\right)-0.25 \mid \mu_{R}}
$$

$$
\begin{equation*}
\frac{\partial \dot{\lambda}_{R}}{\partial \lambda_{F}}=-\frac{1}{\tau_{\lambda_{R}}}\left[\frac{{ }^{C_{T}}{ }_{F} \partial D_{F_{F R}} / \partial \lambda_{F}}{2\left(\mu_{F}^{2}+\lambda_{F}^{2}\right)^{1 / 2}}+\frac{a^{\circ} D_{F}}{8\left(\mu_{F}^{2}+\lambda_{F}^{2}\right)^{1 / 2}}-\frac{\mathrm{D}_{\mathrm{F}_{\mathrm{FR}}}{ }^{C_{T}}{ }_{\mathrm{F}} \lambda_{\mathrm{F}}}{2\left(\mu_{\mathrm{F}}^{2}+\lambda_{\mathrm{F}}^{2}\right)^{3 / 2}}\right] \tag{B8}
\end{equation*}
$$

where

$$
\begin{gather*}
\frac{\partial D_{F_{F R}}}{\partial \lambda_{F}}=\frac{\left[1-\left|\sin \beta_{F U S}\right|\right] \Delta d_{F R}^{\prime}}{\Delta T-\left(\lambda_{F} / \mu_{R}\right)-0.25 \mid \mu_{F}} \\
\frac{\partial \dot{\lambda}_{R}}{\partial \lambda_{R}}=-\frac{1}{\tau_{\lambda_{R}}}\left[1+\frac{a_{R} \sigma_{R}}{8\left(\mu_{R}^{2}+\lambda_{R}^{2}\right)^{1 / 2}}-\frac{C_{T_{R}} \lambda_{R}}{2\left(\mu_{R}^{2}+\lambda_{R}^{2}\right)^{3 / 2}}\right] \tag{B9}
\end{gather*}
$$

Using LOLIN, equations (B1) may be solved with a Newton-Raphson numerical technique
in equations (B10) and B11).

$$
\begin{align*}
\text { ALAMFR } \lambda_{F_{n+1}} & =\lambda_{F_{n}}+\frac{\frac{\partial \dot{\lambda}_{F}}{\partial \lambda_{R}} \dot{\lambda}_{R}-\frac{\partial \dot{\lambda}_{R}}{\partial \lambda_{R}} \dot{\lambda}_{F}}{\operatorname{det}\left[\left.\begin{array}{ll}
\frac{\partial \dot{\lambda}_{F}}{\partial \lambda_{F}} & \frac{\partial \dot{\lambda}_{F}}{\partial \lambda_{R}} \\
\frac{\partial \dot{\lambda}_{R}}{\partial \lambda_{F}} & \frac{\partial \dot{\lambda}_{R}}{\partial \lambda_{R}}
\end{array}\right|_{n}\right.} \tag{B10}\\
\text { ALAMRR } \quad \lambda_{R_{n+1}} & =\lambda_{R_{n}}+\frac{\frac{\partial \dot{\lambda}_{R}}{\partial \lambda_{F}} \dot{\lambda}_{F}-\frac{\partial \dot{\lambda}_{F}}{\partial \lambda_{F}} \dot{\lambda}_{R}}{\operatorname{det}\left[\left.\begin{array}{ll}
\frac{\partial \dot{\lambda}_{F}}{\partial \lambda_{F}} & \frac{\partial \dot{\lambda}_{F}}{\partial \lambda_{R}} \\
\frac{\partial \dot{\lambda}_{R}}{\partial \lambda_{F}} & \frac{\partial \dot{\lambda}_{R}}{\partial \lambda_{R}}
\end{array}\right|_{n}\right.} \tag{B11}
\end{align*}
$$

REFERENCES

1. Cogan, C.; Gajkowski, B. J.; and Garnett, Jr., T. S.: Full Flight Envelope Math Model for $347 /$ HLH Control System Analysis - Control Document. Boeing Company, Vertol Division, report : $01-10148-1,1972$.
2. Yamakawa, G. ; and Miller, L. G.: CH-47B. USAASTA $\# 66-23,1970$.
3. Albion, N.; Leet, J. R.; and Mollenkof, A.: Ground Based Flight Simulation of CH-47C Helicopter. Boeing Company, Vertol Division, report D8-2418-1, 1969.
4. Hackett, W. E.; Garnett, I. S.; and Borek, B. V.: Mathematical Model of the CH-47B Helicopter Capable of Real Time Simulation of the Full Flight Envelope.
5. Hennessy, J. P.: Charts and Equations for the Rapid Calculation of Rotor Thrust
and Flapping Coefficients. Boeing and Flapping Coefficients. Boeing Company, Vertol Division, report 15-A-13,
6.
7. Wheatley, J. B.: An Aerodynamic Analysis of the Autogiro Rotor with a Comparison Between Calculated and Experimental Results. NASA TR-487, 1934.
8. Bailey, F. J., Jr.: A Simplified Theoretical Method of Determining the Characteristics of a Lifting Rotor in Forward Flight. NACA TR-716, 1941.
9. McFarland, R. E.: A Standard Kinematic Model for Flight Simulation at Ames.
NASA CSCR-2, 1973 .
10. Sinacori, J. B.; Stripleford, Robert L.; Jew 11, Wayne F.; and Lehman, John M.: Researcher's Guide to the NASA Ames Flight Simulator for Advanced Aircrafi (FSAA). NASA CR-2875, 1977.
11. Radford, R. C.: The Longitudinal Stability of the CH-47A Helicopter with the Forward Rotor Delta-Three - Results of Flight Test Program. Boeing Company, Vertol Division, report $114-\mathrm{AD}-006,1967$.
12. Bramwell, A. R. S.: Helicopter Dynamics. John Wiley and Sons, Inc., New York,
13.
14. Voh, B.: "LOLIN/LOLiN2," NASA Ames Program Specificatiun (NAPS), no. $215,1982$.
15. Davis, J. M.: Stability and Control Analysis, $\mathrm{CH}-47 \mathrm{~B} / \mathrm{CH}-47 \mathrm{C}$. Boeing Company,
Vertol Division, report $114-\mathrm{AD}-603$, 1966 .
16. McFarland, R. E.; and Rockkind, A. B.: FACT/UPDATE, NASA Ames Program Specification (NAPS), no. 194, 1977.
TABLE 1A.- ROTOR SUBROUTINE VARIABLE DEFINITION

Simulation mnemonic	Ergineering variable	Units	Common location (if applicable)	Physical description
AICFR	${ }^{A_{1}} C_{F}$	rad	CH(218)	Forward rotor lateral cyclic pitch, SNP wind reference frame, transformed through control phasing angle (ϕ_{p}) and corrected for δ_{3} hinging (K_{β})
AICFR1	${ }^{A_{1}^{\prime}} C_{F_{1}}$			Forward rotor lateral cyclic pitch, SNP wind reference frame
AICFR2	${ }^{A_{1}^{\prime}} C_{F_{2}}$			Forward rotor lateral cyclic pitch, SNP wind reference frame, transformed through control phasing angle (${ }_{\phi}$)
AICRR	${ }^{\mathrm{A}_{1}} C_{R}$		CH (280)	Rear rotor lateral cyclic pitch, SNP wind reference frame, transformed control phasing angle $\left(\phi_{p}\right)$ and corrected for δ_{3} hinging (K_{β})
AICRRI	${ }^{A_{1}^{\prime}} \mathrm{C}_{\mathrm{R}_{1}}$			Rear rotor lateral cyclic pitch, SNP wind reference frame
AICRR2	${ }^{A_{1}^{\prime}} C_{R_{2}}$	1		Rear rotor lateral cyclic pitch, SNF wind reference frame, transformed through control phasing angle (ϕ_{p})
ALAMFR	${ }^{\wedge} \mathrm{F}$	---	CH (107)	Forward rotor inflow ratio
ALAMRR	${ }^{\lambda}{ }_{R}$	-	CH(108)	Rear rotor inflow ratio
ALARFR	$L_{A E R}$	ft-1b	CH(52)	Total rolling moment due to forward rotor, helicopter body reference frame
ALARRR	${ }^{L}{ }_{\text {AER }}$ R		CH(53)	Total rolling moment due to rear rotor, helicopter body reference frame
ALBDFR	${ }^{\text {hub }}$ F		CH(293)	Forward rotor hub rolling moment, body ceference frame
ALBDRR	$\mathrm{L}_{\text {hub }}{ }_{\text {R }}$		CH (294)	Rear rotor hub rolling moment, body reference frame
ALFR1	$L_{\text {AER }}^{\prime}$			Forward rotor rolling moment due to aerodynamic forces, helicopter body reference frame
ALFR2	$L_{A E R}^{\prime \prime}$	\dagger		Forward rotor rolling moment due to hub moments, helicopter body reference frame

TABLE 1A.- CONTINUED.

Simulation mnemonic	Engineering variable	Units	Common location (if applicable)	Physical description
ALHBFR	$L_{\text {hub }}$	$\mathrm{ft}-1 \mathrm{~b}$	CH (29)	Forward rotor hub rolling moment, SNP wind reference frame
ALHBRR	$L_{\text {hubr }}$	$\mathrm{ft}-1 \mathrm{~b}$	CH(28)	Rear rotor hub rolling moment, SNP wind reference frame
ALMPFR	λ^{\prime}	---		Forward rotor free-stream component of inflow ratio
ALMPRR	$\lambda^{\prime} \mathrm{R}$	-		Rear rotor free-stream component of inflow ratio
ALMSQF	λ^{2}	---	CH (4)	
ALMSQR	λ_{R}^{2}	---	$\mathrm{CH}(3)$	
ALRR1	$\mathrm{L}_{\mathrm{AER}}^{\mathrm{R}},$	$\mathrm{ft}-1 \mathrm{~b}$		Rear rotor rolling moment due to aerodynamic forces, helicopter body reference frame
ALRR2	$L^{\prime \prime}{ }^{\prime \prime} \mathrm{ER}_{R}$			Rear rotor rolling moment due to hub moments, helicopter body reference frame
AMARFR	$\mathrm{MAER}_{\mathrm{F}}$		CH (54)	Total pitching moment due to forward rotor, helicopter body reference frame
A'ARRR	$\mathrm{MaER}_{\mathrm{R}}$		$\mathrm{CH}(55)$	Total pitching moment due to rear rotor, helicopter body reference frame
AMBDFR	$\mathrm{M}_{\text {hub }}$		CH:295)	Forward rotor hub pitching moment, body reference frame
AMBDRR	$\mathrm{M}_{\text {hub }}$		CH(296)	Rear rotor hub pitching moment, body reference frame
AMFRL	$\mathrm{MAER}_{\mathrm{F}}^{\prime}$			Forward rotor pitching moment due to aerodynamic forces, helicopter body reference frame
AMFR2	$M_{\text {AER }}^{\text {F }}$			Forward rotor pitching moment due to hub moments, helicopter body reference frame
AMHBFR	$M_{\text {hub }}$		CH (45)	Forward rotor hub pitching moment, SNP wind reference frame
AMHBRR	$\mathrm{M}_{\text {hub }}$	\dagger	CH(44)	Rear rotor hub pitching moment, SNP wind reference frame

TABLE 1A.- CONTINUED.

Simulation mnemonic	Engineering variable	Units	Common location (if applicable)	Physical description
AMRR1	$\mathrm{M}_{\mathrm{AER}}{ }^{\prime}$	$\mathrm{ft}-1 \mathrm{~b}$		Forward rotor pitching moment due to aercdynamic forces helicopter body reference frame
AMRR2	$\mathrm{M}_{\mathrm{AER}_{\mathrm{R}}}^{\prime \prime}$	ft-lb		Rear rotor pitching momert due to hub moments, helicopter body reference frame
AMLFR	${ }^{\text {H }} \mathrm{F}$	---	CH (98)	Forward rotor advance ratio
AMURR	${ }^{1 / R}$	---	CH(99)	Rear rotor advance ratio
AMLSQF	μ_{F}^{2}	---	CH(12)	
AYESQR	μ_{R}^{2}	---	CH (11)	
AVARFR	$\mathrm{N}_{\text {AER }}{ }_{\text {F }}$	$\mathrm{ft}-1 \mathrm{~b}$	CH(56)	Total yawing inoment due to forward rotor, helicopter body reference frame
ANARRR	$\mathrm{N}_{\mathrm{AER}} \mathrm{R}$		CH (57)	Total yawing moment due to rear rotor, helicopter body reference frame
ANFR1	$\mathrm{NAER}_{\mathrm{F}}^{\prime}$			Forward rotor yawing moment due to aerodynamic forces, helicopter body reference frame
ANFR2	$\mathrm{N}_{\text {AER }}^{\prime \prime}$			Forward rotor yawing moment due to hub moments, helicopter body reference frame
ANRR1	$\mathrm{N}_{\text {AER }}{ }_{\mathrm{R}}$			Rear rotor yawing moment due to aerodynamic forces, helicopter body reference frame
ANRR2	$\mathrm{N}_{\mathrm{AER}_{\mathrm{R}}}^{\prime \prime}$	\dagger		Rear rotor yawing moment due to hub moments, helicopter body referenc: frame
AOFR	${ }^{\text {a }}{ }_{\mathrm{F}}$	rad	CH(270)	Forward rotor mean coning angle
AOFRSQ	a_{0}^{2}	rad ${ }^{2}$		
AORR	${ }^{a_{0}}{ }_{R}$	rad	CH (271)	Rear rotor mean coning angle
AORRSQ	${ }^{a_{0}^{2}}{ }_{R}$	rad^{2}		

TABLE IA.- CONTINUED.

Simulation mnemonic	Engineering variable	Units	Common location (if applicable)	Physical description
AlBDFR	${ }^{a_{1}}$	rad	$\mathrm{CH}(285)$	Forward rotor longitudinal flapping angle, body reference frame
AlFR	${ }^{a_{1}}$	rad	CH(226)	Forward rotor longitudinal flap ing angle, SNP wind reference frame
AlFRSQ	$a_{1_{F}}^{2}$	rad^{2}		
Al BDRR	${ }^{a_{1}}{ }_{R}$	rad	CH(286)	Rear rotor longitudinal flapping angle, body reference frame
A1RR	${ }^{a} 1_{R}$	rad	CH (94)	Rear rotor longitudinal flapping angle, SNP wi`d reference frame
AlRRSQ	$a_{l_{R}}^{2}$	rad^{2}		
BDFFR	$\mathrm{D}_{\mathrm{FFR}}$	---	CH(232)	Forward-on-rear rotor interference term corrected for sideslip angle
BDFRF	$\mathrm{DF}_{\mathrm{RF}}$	---	CH (231)	Kear-on-forward rotor interference term corrected for sideslip angle
BETAFR	B_{E}^{\prime}	rad	CH (88)	Forward rotor sideslip angle
BETARR	β_{R}^{\prime}	rad	CH(89)	Rear rotor siaeslip angle
BETC	$1-\left\|\sin B_{F U S}\right\|$	---		Term used in inflow ratio calculation
BICFR	${ }^{B}{ }_{1} C_{F}$	rad	CH (220)	Forward rotor longitudinal cyclic pitch, SNP wind reference frame, transformed through control-phasing angle $\left(\phi_{p}\right)$ and corrected for δ_{3} hinging (K_{2})
BICFR1	${ }^{B_{1}^{\prime}} \mathrm{C}_{\mathrm{F}_{1}}$	rad		Forward rotor longitudinal cyclic pitch, SNP wind reference frame
BICFR2	${ }^{B_{1}^{\prime}} \mathrm{C}_{\mathrm{F}_{2}}$	rad		Forward rotor longitudinal cyclic pitch, SNP wind reference frame, transformed through control phasing angle (ϕ_{p})
TABLE 1.A.- CONTINUED.				
Simulation mnemonic	Enginearing variable	Units	Common location (if applicable)	Physical description
:---:	:---:	:---:	:---:	:---:
BICRR	${ }^{B}{ }^{1} C_{R}$	rad	CH(281)	Rear rotor longitudinal cyclic pitch, SNP wind reference frame, transformed through control phasing angle (ϕ_{p}) and corrected for δ_{3} hinging $\left(K_{\beta}\right)$
BICRR1	${ }^{B}{ }^{\prime} \mathrm{C}_{\mathrm{R}_{1}}$	rad		Rear rotor longitudinal cyclic pitch, SNP wind reference frame
BICRR2	${ }^{B_{1}^{\prime}} C_{R_{2}}$	rad		Rear rotor longitudinal cyclic pitch, SNP wind reference frame, transformed through control phasing angle (ϕ_{p})
BKGEFR	$\mathrm{K}_{\mathrm{ge}}^{\mathrm{F}}$	-		Forward rotor ground effect correction term
BKGERR	$\mathrm{K}_{\mathrm{ge}}^{\mathrm{R}}$	---		Rear rotor ground effect correction term
B1BDFR	$\mathrm{b}_{1}{ }_{F}$	rad	$\mathrm{CH}(287)$	Forward rotor lateral flapping angle, body reference frame
BlFR	$\mathrm{b}_{1} \mathrm{~F}$	rad	CH (227)	Forward rotor lateral flapping angle, SNP wind reference frame
B1FRSQ	$b_{l_{F}}^{2}$	rad^{2}		
B1BDRR	b_{1}	rad	CH (288)	Rear rotor lateral flapping angle, body reference frame
B1RR	$\mathrm{b}_{\mathrm{l}_{\mathrm{R}}}$	rad	CH (95)	Rear rotor lateral flapping angle, SNP wind reference frame
BlRRSQ	$\mathrm{b}_{1_{\mathrm{R}}}^{2}$	rad^{2}		
CBETFR	$\cos \beta_{V}^{\prime}$	---		
CBETRR	$\cos \beta_{\mathrm{R}}^{\prime}$	-		
CFFROI	$\pi R_{B_{F}}^{4}$	ft^{4}		
CFFR02	$\mathrm{a}_{\mathrm{F}} \sigma_{\mathrm{F}} / 2$		CH (78)	
CFFR03	${ }^{98} \mathrm{~F}_{1}$			
TABLE 1A. - CONTINUED.

TABLE IA. - CONTINUED.
Simulation mnemonic	Engineering variable	Units	Common location (if applicable)	Physical description
CFRR70	$\mathrm{e}_{\mathrm{R}} \mathrm{b}_{\mathrm{R}} \mathrm{M}_{\mathrm{w}_{\mathrm{R}}} / 2$			
CHFR	C_{HF}	---	$\mathrm{CH}(62)$	Forward rotor drag coefficient
CHFR1	${ }^{2} \mathrm{C}_{\mathrm{H}_{\mathrm{F}}}$ /a σ	--		Normalized forward rotor drag coefficient
CHRR	${ }^{\mathrm{C}_{\mathrm{H}_{\mathrm{R}}}}$	--	CH(63)	Rear rotor drag coefficient
CHRR1	$2 \mathrm{C}_{\mathrm{H}_{\mathrm{R}}} / \mathrm{a} \sigma$	---		Normalized rear rotor drag coefficient
COSIFR	$\cos \mathrm{i}_{\mathrm{F}}$	--	$\mathrm{CH}(47)$	Cosine of forward rotor shaft incidence angle
COSIRR	$\cos \mathrm{i}_{\mathrm{R}}$	-	CH(49)	Cosine of rear rotor shaft incidence angle
CPhPFR	$\cos \phi_{\mathrm{P}_{\mathrm{F}}}$	---	CH(35)	Cosine of forward rotor control phasing angle
CPHPRR	$\cos \phi_{\mathrm{P}_{\mathrm{R}}}$	---	CH(34)	Cosine of rear rotor control phasing angle
CQFR	$\mathrm{C}_{\text {QF }}$	---	CH (66)	Forward rotor torque coefficient
CQFRI	$2 \mathrm{C}_{\mathrm{QF}} / \mathrm{a} \sigma$	--		Normalized forwari rotor torque coefficient
CQRR	$\mathrm{C}_{\mathrm{Q}_{\mathrm{R}}}$	---	CH(67)	Rear rotor torque coefficient
CQRR1	$2 \mathrm{C}_{\mathrm{Q}_{\mathrm{R}}} / \mathrm{a} \sigma$	---		Normalized rear rotor torque coefficient
CSFR02	$\mathrm{C}_{\mathrm{F}_{2}}$	--		Coefficient used in rotor-on-rotor interference term calculation
CTFR	${ }^{\text {C }} \mathrm{T}_{\mathrm{F}}$	----	CH(31)	Forward rotor thrust coefficient
CTFR:	${ }^{2} \mathrm{~T}_{\mathrm{F}} / \mathrm{a} \mathrm{\sigma}$	---		Normalized forward rotor thrust coefficient
CTRR	$\mathrm{C}_{\mathrm{T}_{\mathrm{R}}}$	---	CH(30)	Rear rotor thrusi coefficient
CTRR1	$2 \mathrm{C}_{\mathrm{T}} / \mathrm{a} \mathrm{\sigma}$	---		Normalized rear rotor thrust coefficient
TABLE IA.- CONTINUED.

TABLE 1A.- CONTINUED.

TABLE IA.- CONTINUED.
Simulation mnemonic	Engineering variable	Units	$\begin{array}{\|l} \text { Common } \\ \text { location (if } \\ \text { applicable) } \end{array}$	Physical description
OMSQFR	$\left(S_{F}^{\prime}-r_{F}\right)^{2}$	$\mathrm{rad}^{2} / \mathrm{sec}^{2}$		
OMSQRR	$\left(r_{R}-r_{R}\right)^{2}$	$\mathrm{rad}^{2} / \mathrm{sec}^{2}$		
PFR	P_{F}	$\mathrm{rad} / \mathrm{sec}$	CH(244)	Helicopter roll rate transformed to forward rotor SNP wind reference frame
PRR	p_{R}	$\mathrm{rad} / \mathrm{sec}$	CH(241)	Helicopter roll rate transformed to rear rotor SNP wind reference frame
QAERFR	$\mathrm{Q}_{\text {AER }}{ }_{\mathrm{F}}$	$\mathrm{ft}-1 \mathrm{~b}$	CH(64)	Forward rotor torque required
QAERRR	$\mathrm{Q}_{\text {AER }}{ }_{\text {R }}$	$\mathrm{ft}-1 \mathrm{~b}$	CH(65)	Rear rotor torque required
QFR	q_{F}	$\mathrm{rad} / \mathrm{sec}$	CH(245)	Helicopter pitch rate transformed to forward rotor SNP wind reference frame
QRR	q_{R}	$\mathrm{rad} / \mathrm{sec}$	CH(242)	Helicopter pitch rate transformed to forward rotor SNP wind reference frame
RFR	r_{F}	$\mathrm{rad} / \mathrm{sec}$		Helicopter yaw racie transformed to forward rotor SNP wind reference frame
RRR	r_{R}	$\mathrm{rad} / \mathrm{sec}$		Helicopter yaw rate transformed to rear rotor SNP wind reference frame
SBETFR	$\sin \beta_{F}$	---		
SBETRR	$\sin \beta_{\mathrm{R}}$			
SDFR	d_{F}	ft	Lateral dist	ce from helicopter c.g. to G of forward rotor hub
SDRR	d_{R}	ft	Lateral dist	nce from helicopter c.g. to \mathcal{G} of =ea: rotor hub
SHFR	${ }^{\text {h }}$ F	ft	Vertical dis	ance from helicopter c.g. to \mathcal{G} of forward rotor hub
SHRR	${ }^{\text {h }}$ R	ft	Vertical dis	ance from helicopter c.g. to \mathcal{L} of forward rotor hub
TABLE IA.- CONTINUED.				
Simulation mnemonic	Engineering variable	Units	Common location (if applicable)	Physical description
:---:	:---:	:---:	:---:	:---:
SI				(2×1) matrix used in inflow dynamics calculation
SIGFR	${ }^{\circ} \mathrm{F}$	---	CH (222)	Forward rotor solidity ratio
SIGRR	${ }^{\sigma} \mathrm{R}$	---	CH(223)	Rear rotor solidity ratio
SINIFR	$\sin i_{F}$		CH (46)	
SINIRR	$\sin \mathrm{i}_{\mathrm{K}}$		$\mathrm{CH}(48)$	
SLFR	${ }^{i} \mathrm{~F}$	ft		Longitudinal distance from helicopter c.g. to \mathcal{G} of forward rotor hub
SLRP	ℓ_{R}	ft		Longitudinal distance from helicopter c.g. to G of rear rotor hub
SMLFI	$1 /\left(\mu_{F}^{2}+\lambda_{F}^{2}\right)$	---		Term used in inflow ratio calculation
SMLRI	$1 /\left(\mu_{R}^{2}+\lambda_{R}^{2}\right)$	---		Term used in inflow ratio calculation
SPHPFR	$\sin \phi_{P_{F}}$	---	CH (33)	
SPHPRR	$\sin { }^{+} \mathrm{P}_{\mathrm{R}}$	---	CH(32)	
TFR	T_{F}	1 b	CH(23)	Forward rotor thrust
THOFR	${ }^{\theta} 0_{F}$	rad	$\mathrm{CH}(216)$	Forward rotor collective pitch corrected for δ_{3} hinging (K_{β})
THORR	${ }^{\theta} 0_{R}$	rad	CH(217)	Rea: rotor collictive pitch corrected for δ_{3} hinging $\left(K_{\beta}\right)$
TIGEFR	TI.g.e.F			Altitude/airspeed dependent ground effect correction term, forward rotor
TIGERR	$\mathrm{T}_{\text {I.g.e. }}$			Altitude/airspeed dependent ground effect correction term, rear rotor
TABLE 1A.- CONTINUED.				
Simulation mnemonic	Engineering variable	Units	Common location (if applicable)	Physical description
:---:	:---:	:---:	:---:	:---:
TLFI	$1 / \tau_{\lambda F}$	1/sec		
TLRI	$1 / \tau_{\lambda_{R}}$	1/sec		
TMFR01	$\cos \beta_{F}^{\prime} \cos i_{F}$	---		
TMFR02	$\cos B_{F}^{\prime} \sin i_{F}$	---		
TMFR03	$\sin \beta_{F}^{\prime} \cos i_{F}$	---		
TMFR04	sin $B_{F}^{\prime} \sin \mathrm{i}_{F}$	---		
TMFR05	$1 / \mathrm{R}_{\mathrm{B}_{\mathrm{F}}}\left(\Omega_{\mathrm{F}}^{\prime}-\mathrm{r}_{\mathrm{F}}\right)$	1/ft/sec		
TMFR08	$\delta_{F} / \mathrm{a}_{\mathrm{F}}$	---		
TMFR09	$\delta_{F} / 2 a_{F}$	---		
TMFR14	$2 / 2$	---	CH (159)	
TMPR15	${ }_{\mu_{F}} / 2$	--	$\mathrm{CH}(160)$	
IMFR16	$\lambda_{\mathbf{F}} / 2$	-	$\mathrm{CH}(161)$	
TMFR19	$\mathrm{p}_{\mathrm{F}} / \Omega_{\mathrm{F}}$	---	CH(164)	
TMFR23	$\mathrm{P}_{\mathrm{F}} / \Omega_{\mathrm{F}}$	---	CH (168)	
TMFR32	a			Matrix element (l,l) in forward rotor flapping-coning linear system of equations

[^0]TABLE 1A.- CONTINUED.

Simulation mnemonic	Engineering variable	Units	Common location (if applicable)	Physical description
TMFR33	$\mathrm{B}_{\mathrm{F}}=0$			Matrix element $(1,2)$ in forward rotor flapping-coning linear system of equations
TMFR34	$C_{F}=2_{\mu_{F}} K_{B_{F}}$			Matrix element (1,3) in forward rotor flapping-coning linear system of equations
TMFR35	$E_{F}=\frac{1}{4}-\mu_{F}^{2} / 8$			Matrix element $(2,2)$ in forward rotor flapping-coning linear system of equations
TMFR36	b			Matrix element (3,1) in forward rotor flapping-coning linear system of equations
TMFR37	$H_{F}=-K_{3 F}$			Matrix element (3,2) in forward rotor flapping-coning linear system of equations
TMFR39	c			Coning-equation constant term
TMFR40	d			Longitudinal flapping-equation constant term
TMFR41	e			Lateral flapping-equation constant term
TMFR42	$B_{F} E_{F}-C_{F} E_{F}$			Coning-flapping equations term
TMFR43	$\mathrm{B}_{\mathrm{F}} \mathrm{I}_{\mathrm{F}}-\mathrm{C}_{\mathrm{F}} \mathrm{H}_{\mathrm{F}}$			Coning-flapping equations term
TMFR44	$\mathrm{E}_{\mathrm{F}} \mathrm{I}_{\mathrm{F}}-\mathrm{F}_{\mathrm{F}} \mathrm{H}_{\mathrm{F}}$			Coning-flapping equations term

Table 1A.- CONTINUED.

Simulation mnemonic	Engineering variable	Units	Common location (if applicable)	Physical description
TMFR4 5 TMFR46 TMFR52	$J_{F} G_{F}-L_{F} A_{F}$ $1 / \Omega_{F}$			Coning-flapping equations term Inverse of determinait of flapping-coning system matrix
TMFR 56	f			Matrix element (2,3) in flapping-coning linear system of equations
TMFR57	$D_{F}=\frac{2}{3} K_{B F}{ }_{F}$			Matrix element (2,1) in flapping-coning linear system of equations
TMFR58	$I_{F}=1.0$			Matrix element (3,3) ir flapping-coning linear system of equations
TMFR59	$J_{F} D_{F}-K_{F}{ }^{\text {d }}$ F			Coning-flapping equations term
MMFR60	$L_{F}{ }^{\text {D }}$ F $-K_{F}{ }^{G}{ }_{F}$			Coning-flapping equations term
TMFR62	$\frac{1}{2} \sqrt{\mu_{F}^{2}+\lambda_{F}^{2}}$			
TMFR6 3	$\mathrm{I}_{\mathrm{F}} /\left(\rho \mathrm{a}_{\mathrm{F}} \mathrm{C}_{\mathrm{F}} \mathrm{R}_{\mathrm{B}_{\mathrm{F}}}^{4}\right)$		CH (175)	
TMFR64	$\frac{3}{2}\left(1+\mu_{F}^{2}\right)$		CH (176)	
TMFRó6	$\frac{1}{4}+\frac{3}{8} \mu_{R}^{2}$		CH (178)	
TMFR67	$\therefore_{F}{ }^{2} \mathrm{e}_{\mathrm{F}} \mathrm{b}_{\mathrm{F}}{ }^{M}{ }_{W_{F}} / 2$		CH(179)	

[^1]TABLE IA.- CONTINUED.

[^2]TABLE IA.- CONTINUED.

Simulation mnemonic	Engineering variable	Units	Common location (if applicable)	Physical description
TMRR42	$B_{R} E_{R}-C_{R} E_{R}$			Coning-flapping equations term
TMRR43	$B_{R} I_{R}-C_{R} H_{R}$			Coning-flapping equations term
TMRR44	$E_{R} I_{R}-F_{R} H_{R}$			Coning-flapping equations term
TMRR45	$J_{R} G_{R}-L_{R} A_{R}$			Coning-flapping equations term
TMRR46				Inverse of determinant of f lapping-coning system matrix
TMRR52	$1 / \Omega_{R}$			
TMRR56	n			Matrix element $(2,3)$ in rear rotor flapping-coning linear system of equations
TMRR57	$\mathrm{D}_{\mathrm{R}}=2 / 3 \mathrm{~K}_{\mathrm{B}_{\mathrm{R}} \mu_{R}}$			Matrix element (2,1) in flapping-coning linear system of equations
TMRR58	$I_{R}=1.0$			Matrix element (3,3) in flapping-coning linear system of equations
TMRR59	$J_{R} D_{R}-K_{R} A_{R}$			Coning-flapping equations term
TMRR60	$L_{R} D_{R}-K_{R} G_{R}$			Coning-flapping equations term
TMRR62	$\frac{1}{2} \sqrt{\mu_{R}^{2}+\lambda_{R}^{2}}$			Coning-flapping equations term
TMRR63	$\mathrm{I}_{\mathrm{R}} /\left(\mathrm{fa}_{\mathrm{R}} \mathrm{c}_{\mathrm{R}} \mathrm{R}_{\mathrm{B}_{\mathrm{R}}}^{4}\right)$		CH (145)	
TMRR64	$\frac{3}{2}\left(1+\mu_{R}^{2}\right)$		$\mathrm{CH}(146)$	
TMRR66	$\frac{1}{4}+\frac{3}{8} \mu_{R}^{2}$		CH(148)	
TMRR67	$\Omega_{R}^{2} \mathrm{e}_{\mathrm{R}} \mathrm{b}_{\mathrm{R}}{ }^{M}{ }_{w_{R}} / 2$		CH (149)	

$n_{F_{R}}=K_{B_{R}}\left(\frac{1}{4}+\frac{3}{8} \mu_{R}^{2}\right)$
origimat acis．
of roon Quain

	Rear rotor thrust	Helicopter longitudinal velocity at forward rotor hub SNP wind reference frame	合 $\begin{array}{r}\text { H } \\ \stackrel{0}{0} \\ \hline\end{array}$ $\stackrel{\rightharpoonup}{0}$ 2 $\stackrel{3}{0}$ 0 0 0 0 		\hat{B} 莒 苞 0 0 0 0 0 0 0 0 	き H $\stackrel{0}{0}$ 0 范 H $\stackrel{\text { r }}{\substack{-1 \\ .4 \\ ~}}$ 			莫 号 0 0 范 $\stackrel{2}{0}$ $\stackrel{0}{0}$ $\stackrel{1}{0}$ 0 	8 80 ） 吕 $\stackrel{\text { 山゙ }}{\sim}$ $\stackrel{\rightharpoonup}{0}$ $\stackrel{\rightharpoonup}{0}$ $\stackrel{0}{0}$ $\stackrel{0}{0}$ $\stackrel{\rightharpoonup}{3}$ 	菅 家 H O O 范 荌 0 0 0 0 0 8 	Forward rotor tip speed			80 B $\stackrel{3}{3}$ $\stackrel{0}{0}$ 0
		$\begin{aligned} & \text { N్工 } \\ & \text { In } \end{aligned}$										$\xrightarrow{\text { I }}$			
$\stackrel{n}{\underset{y}{z}}$		$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \stackrel{0}{3} \\ & \hline \end{aligned}$													
	H	${ }^{\sim}$	$3^{\text {L }}$	$\overbrace{}^{*}$	${ }^{\sim}$	2^{-2}	$\overbrace{}^{\sim}$	$>^{\text {b }}$	$>^{*}$	$>^{\vec{x}}$	$3^{\text {c }}$			3^{14}	
	\％	号	$\begin{array}{r} -\vec{x} \\ \stackrel{\rightharpoonup}{u} \end{array}$	$\begin{aligned} & \underset{\sim}{\underset{5}{4}} \end{aligned}$	$\stackrel{x}{s}$	$\begin{aligned} & \vec{Z} \\ & \stackrel{3}{3} \end{aligned}$	$\begin{aligned} & \tilde{8} \\ & \underset{y}{3} \end{aligned}$	$\begin{aligned} & \overrightarrow{x_{1}} \\ & \stackrel{y}{2} \end{aligned}$	$\begin{aligned} & \tilde{Z} \\ & \stackrel{y y}{4} \end{aligned}$	$\stackrel{\rightharpoonup}{\approx}$	$\begin{aligned} & \tilde{x} \\ & \stackrel{y}{5} \end{aligned}$			$\frac{2}{3}$	$\begin{aligned} & \overrightarrow{8} \\ & \stackrel{y}{3} \end{aligned}$

TABLE 1A.- CONCLUDED.

Simulation mnemonic	Engineering variable	Units	Common location (if applicable)	Physical description
WFR2	${ }^{\mathrm{W}} \mathrm{F}_{2}$	$\mathrm{ft} / \mathrm{sec}$		Helicopter vertical velocity at iorward rotor hub, SNP reference frame
WRR	${ }^{W}$ R	$\mathrm{ft} / \mathrm{sec}$		Helicopter vertical velocity at rear rotor hub, SNP wind reference frame
WRR1	${ }^{\mathrm{w}} \mathrm{R}_{1}$	$\mathrm{ft} / \mathrm{sec}$		Helicopter vertical velocity at rea: rotor hub, body reference frame
WRR2	${ }^{\mathrm{w}} \mathrm{R}_{2}$	$\mathrm{ft} / \mathrm{sec}$		Helicopter vertical velocity at rear rotor hub, SNP reference frame
KAERFR	$\mathrm{X}_{\mathrm{AER}_{\mathrm{F}}}$	1 b	$\mathrm{CH}(72)$	Forward rotor hub longitudinal force transformed to helicopter body reference frame
XAERRR	$\mathrm{X}_{\text {AER }}$		CH (75)	Rear rotor hub longitudinal force transformed to helicopter body reference frame
YAERFR	$\mathrm{Y}_{\mathrm{AER}_{\mathrm{F}}}$		$\mathrm{CH}(73)$	Forward rotor hub lateral force, transformed to helicopter body reference frame
YAERRR	$\mathrm{Y}_{\mathrm{AER}} \mathrm{R}_{\mathrm{R}}$		CH (76)	Rear rotor hub lateral force, transformed to helicopter body reference frame
YFR	${ }^{Y} \mathrm{~F}$		$\mathrm{CH}(27)$	Forward rotor side force, SNP reference frame
YFRBOD	Y_{F}		CH(291)	Forward rotor side force, body reference frame
YRR	Y_{R}		CH(26)	Rear rotor side force, SNP reference frame
YRRBOD	Y_{R}		CH (292)	Rear rotor side force, body reference frame
ZAERFR	Z_{F}		CH(74)	Forward rotor hub vertical force, transformed to helicopter body reference frame
ZAERRR	Z_{R}	\dagger	CH (77)	Rear rotor hub vertical force, transformed to helicopter body reference frame

table 1B.- CONTINUED.

Simulation mnemcaic	Engineering variable	Units	$\|$Common location (if applicable)	Nominal value	Physical description
CTPFRMX	${ }^{2} C_{T} /\left.\mathrm{a} \sigma\right\|_{\text {max }}$			1.0	Maximum value of armalized thrust coefficient
DELFRO	$\varepsilon_{0}{ }_{F}$	---		. 00925	Term used in calculation of forward rots profile drag
DELFR1	${ }^{\delta_{1}} \mathrm{~F}$	---		. 23	Term used in calculation of forward roto profile drag
DELH1		ft		9.83	Distance from helicopter c.g. to rotor hub
DELRRO	${ }^{8} 0_{R}$	---		. 00925	Term used in calculation of rear rotor profile
DELRRI	$\delta^{1_{R}}$	---		. 23	Term used in calculation of rear rotor profile drag
FIFR	I_{F}	slug-ft ${ }^{2}$		2700	Forward rotor moment of inertia about vertical axis
FIRR	t_{R}	slug-ft ${ }^{2}$		2700	Rear rotor moment of inertia about vertical exis
PHIPFR	${ }^{¢} \mathrm{P}_{\mathrm{F}}$	rad		0	Forward rotor pitch-flap coupling control phasing angle
PHIPRR	$\phi_{\mathrm{P}_{\mathrm{R}}}$	rad		0	Rear rotor pitch-flap coupling control phasing angle
RBFR	R_{BF}	ft		30	Forward rotor radius
RBRR	$\mathrm{R}_{3_{R}}$	ft		30	Rear rotor radius
SAFR	a_{F}	--		5.3	Lift-curve slope of forward rotor blade section
SARR	a_{R}	---		5.3	Lift-curve slope of rear rotor blade section
SBFR	b_{F}	---		3.0	Number of blades/forward rotor hub
SBRR	b_{R}	-		3.0	Number of blades/rear rotor hub
SCFR	${ }^{\text {c }}$ F	ft		2.1042	Forward rotor hub mean aerodynamic chord

TABLE 1B.- CONCLUDED.

Simulation mnemonic	Engineering variable	Units	Common location (if applicable)	Nominal value	Physical description
SCRR	${ }^{\text {c }}$ R	ft		2.1042	Rear rotor hub mean aerodynamic chord
SDFRX	${ }^{\text {d }} \mathrm{F}_{\mathrm{X}}$			0	Lateral position of baseline helicopter c.g. relative to forward rotor hub \mathcal{G}
SDRRX	$\mathrm{d}_{\mathrm{R}_{\mathrm{X}}}$			0	Lateral position of baseline heircopter c.g. relative to rear rotor hub \mathcal{G}
SEFR	${ }^{\text {F }}$			0.667	Forward rotor flapping hinge offset
SERR	e_{R}			0.667	Rear rotor flapping hinge offset
SHFRX	$\mathrm{h}_{\mathrm{F}_{\mathrm{x}}}$			7.49	Vertical position of baseline helicopter c.g. relative to forward rotor hub G
SHRRX	$\mathrm{h}_{\mathrm{R}_{\mathrm{X}}}$			12.16	Vertical position of baseline helicopter c.g. relative to rear rotor hub G
SLFRX	${ }^{\ell} \mathrm{F}_{\mathrm{X}}$			20.43	Longitudinal position of baseline helicopter c.g. relative to forward rotor hub \mathcal{G}
SLRRX	${ }^{\chi} \mathrm{R}_{\mathrm{X}}$	1		-18.46	Longitudinal position of baseline helicopter c.g. relative to rear rotor hub G
THTWFR	${ }^{\theta}{ }_{\text {tw }}$	rad		-. 2094	Forward rotor blade twist at tip
THTWRR	${ }^{\theta} \mathrm{tw}_{\mathrm{R}}$	rad		-. 2094	Rear rotor blade twist at tip
TLF	${ }^{\lambda^{\prime}}$	sec		1/3	Forward rotor inflow dynamics time conssant
TLR	${ }^{\tau_{\lambda}} \mathrm{R}$	sec		1/3	Rear rotor inflow dynamics time constant
UGE	${ }^{\text {i }}$ g.e.	$\mathrm{ft} / \mathrm{sec}$		67.56	Airspeed below which thrust is modified for ground effect

TABLE 2.- ROTOR SUBROUTINB VARIABLE DEFINITION,

TABLE 3A.- AERO SUBROUTINE VARIABLE DEFINITION

Simulation mnemonic	Engineering variable	Units	$\begin{aligned} & \text { Common } \\ & \text { location (if } \\ & \text { applicable) } \end{aligned}$	Physical description
ALARFS	$\mathscr{L}^{\text {FUS }}$	$\mathrm{ft}-1 \mathrm{~b}$	CH (238)	Fuselage rolling moment, helicopter body reference frame
ALPHFD	$\alpha_{\text {FUS }}$	deg		Fuselage angle of attack
ALPHFS	$\alpha_{\text {FUS }}$	rad	CH (214)	Fuselage angle of attack
ALQES	$\mathscr{L}_{\mathrm{FUS}} / \mathrm{q}_{\mathrm{FUS}}$	$f t^{3}$		Fuselage rolling moment normalized to fuselage dynamic pressure
ALTQFS	$\mathscr{L}_{\text {FUS }} / \mathrm{q}_{\text {FUS }}$	$\mathrm{f} \mathrm{t}^{2}$		Fuselage lift force
AMARFS	$\mathrm{M}_{\text {FUS }}$	ft-1b	CH (239)	Fuselage pitching moment, helicopter body reference frame
AMQFS	$\mathrm{M}_{\mathrm{FUS}} / \mathrm{q}_{\mathrm{FUS}}$	$f t^{3}$		Fuselage pitching moment normalized to fuselage dynamic pressure
ANARFS	$\mathrm{N}_{\text {FUS }}$	$\mathrm{ft}-1 \mathrm{~b}$	$\mathrm{CH}(240)$	Fuselage yawing moment, helicopter body reference frame
ANQFS	$\mathrm{N}_{\mathrm{FUS}} / \mathrm{q}_{\mathrm{FUS}}$	$f t^{3}$		Fuselage yawing moment, normalized to fuselage dynamic pressure
BETAFJ	$\beta_{\text {FUS }}$	deg		Fuselage sideslip angle
BETAFS	$B_{\text {FUS }}$	rad	CH(59)	Fuselage sidesiip angle
DQFS	$\mathrm{D}_{\mathrm{FUS}} / \mathrm{q}_{\mathrm{FUS}}$	$f t^{2}$		Fuselage drag force, normalized to fuselage dynamic pressure
FAX	$\mathrm{X}_{\text {AERO }}$	1b	A (136)	Sum of longitudinal fuselage sud rotor aerodynamics forces, helicopter body reference frame
FAY	$Y_{\text {AERO }}$	1 b	A(137)	Sum of lateral fuselage and rotor aerodynamic forces. helicopter body reference frame
FAZ	$Z_{\text {ZERO }}$	1 b	A(138)	Sum of vertical fuselage and rotor aerodynamic forces, helicopter body reference frame

TABLE 3A.- CONTINUED.

Simulation mnemonic	Engineering variagle	Units	Common location (if applicable)	Physical description
SBETFS	$\sin B_{\text {FUS }}$	-	CH(50)	
SDCFS	$\mathrm{d}_{\mathrm{c}_{\mathrm{FUS}}}$	ft		Lateral position of wind-tunnel model c.g. relative to actual helicopter c.g.
SDCFSX	$\mathrm{d}_{\mathrm{c}_{\mathrm{x}}}$			Lateral position of wind-tunnel model c.g. relative to baseline helicopter c.g.
SHCFS	$\mathrm{h}_{\mathrm{c}_{\mathrm{FUS}}}$			Vertical position of wind tunnel model c.g. relative to actual helicopter e.g.
SHCFSX	$\mathrm{h}_{\mathrm{c}} \mathrm{C}$			Vertical position of wind tunnel model c.g. relative to baseline helicopter c.g.
SLCFS	${ }^{\ell} c_{\text {FUS }}$			Longitudinal position of wind tunnel model c.g. relative to actual helicopter c.g.
SLCFSX	${ }^{\ell} c_{x}$	\downarrow		Longitudinal position of wind tunnel model c.g. relative to baseline helicopter c.g.
SQFS	$\mathrm{q}_{\mathrm{FUS}}$	$1 \mathrm{~b} / \mathrm{ft}{ }^{2}$	$\mathrm{CH}(110)$	Fuselage dynamic pressure
TAL.	$\mathrm{L}_{\text {AERO }}$	$\mathrm{ft}-1 \mathrm{~b}$	A(15j)	Sum of fuselage and rotor aerodynamic rolling moments, helicopter body reference frame
TAM	$\mathrm{M}_{\text {AERO }}$	$\mathrm{ft}-1 \mathrm{~b}$	A (156)	Sum of fuselage and rotor aerodynamic pitching momentis, helicopter body reference frame
TANALF	$\tan \alpha_{\text {FUS }}$	-		
TANBTF	$\tan \beta_{\text {FUS }}$	-		
TEMA	$1.689 \mathrm{o} / \mathrm{o}_{0}$		CH (92)	Conversion factor between TAS (kt) and CAS (ft/sec)

TABLE 3A.- CONTINUED.

Simulation mnemonic	Engineering variable	Units	Common location (if applicable)	Physical description
TFN	$\mathrm{N}_{\text {AERO }}$	$\mathrm{ft}-1 \mathrm{~b}$	A (157)	Sum of fuselage and rotor aerodynamic yawing moments, helicopter body reference frame
TMFSO1	a	$f t^{2}$		Term used in flat-plate area correction of fuselage forces
TMGN03	ρ / ρ_{0}			Ambient to standard sea level density ratio
TMGN04	$\frac{2}{\pi}\left\|\beta_{\mathrm{FUS}}\right\|$	-	CH(103)	
VCALB1	$\mathrm{V}_{\text {cal }}$	$\mathrm{ft} / \mathrm{sec}$		Calibiated airspeed
vTOTAL	$\mathrm{V}_{\mathrm{TUS}}$	$\mathrm{ft} / \mathrm{sec}$		Fuselage total velocity
WBPR	$\mathrm{w}_{\mathrm{B}}^{\prime}$	$\mathrm{ft} / \mathrm{sec}$		Vertical velocity at fuselage
WBPRSQ	$\mathrm{w}_{\mathrm{B}}{ }^{2}$	($\mathrm{ft} / \mathrm{sec}$		
WIFS		$\mathrm{ft} / \mathrm{sec}$	CH (215)	Rotor downwash contribution to vertical velocity at fuselage
ZAERFS	$\mathrm{X}_{\mathrm{FUS}}$	lb	CH(228)	Fuselage longitudinal force, helicopter body reference frame
XQFPC	a	$f t^{2}$		Term used in flat-plate area correction of fuselage forces
YAERFS	$\mathrm{Y}_{\text {FUS }}$	1 b	CH (229)	Fuselage lateral force, helicopter body reference frame

[^3]$\imath_{\mathrm{f}}^{\mathrm{e}}$ $\tan \beta_{\mathrm{FUS}} / \sqrt{1+\tan \alpha_{\mathrm{FUS}}^{2}+\tan \beta_{\mathrm{FUS}}^{2}}$
TABLE 3B. - AERO CONSTANTS AND CONVERSION FACTORS

Simulation mnemonic	Engineering variable	Units	Common location (if applicable)	```Nominal value 2/\pi```	Physical description
CFGN10	$2 / \pi$				
DELFE	Δf_{e}	$f t^{2}$		22	Flat-plate area correction value
PI	π		CH(21)	π	
PIUV2	$\pi / 2$	deg/rad	CH (20)	$\pi / 2$	
R2D			A(359)	57.3	
SDCFSX	${ }^{\text {d }}{ }^{\text {c }}$	ft		0	Lateral position of wind tunnel model c.g. relative to baseline helicopter c.g.
SHCFSX	${ }^{\ell} c_{x}$	ft		1.308	Vertical position of wind tunnel model c.g. relative to baseline helicopter c.g.
SLCFSX	h_{c}	ft		-1.467	Longitudinal position of wind tunnel model c.g. relative to baseline helicopter c.g.

TABLE 4.- AERO SUBROU'TINE TRANSFER VAKIABLES, INPUT DATA AND LOGICAL FLAGS

	stay
$\stackrel{\square}{5}$	

table ja.- CONTINUED.

Simulation mnemonic	Engineering variable	Units	Common location (if applicable)	Physical description
ENG27L		HP/sec		Variable limit in gas-generator dynamics loop, left engine
ENG27R		HP/sec		Variable limit in gas-generator dynamics loop, right engine
EN2		$\mathrm{deg} / \mathrm{sec}$		Result of trimming loop to zero $\dot{\Omega}$
Elarg	${ }^{\delta} \mathrm{C}_{\mathrm{TOT}}-{ }^{\delta} \mathrm{C}_{\mathrm{BIAS}}$	deg		
IFIRSTL				Left-engine fuel-control-system hysteresis flag
IFIRSTR				Right-engine fuel-control-system hysteresis flag
OMEGA	Ω	$\mathrm{rad} / \mathrm{sec}$		Rotor angular velocity
OMEGDOT	$\dot{\Omega}$	$\mathrm{rad} / \mathrm{sec}^{2}$		Rotor angular acceleration
OMEGPF	Ω^{\prime}	$\mathrm{rad} / \mathrm{sec}$	CH (115)	Governor forward rotor angular velocity
OMEGPR	Ω_{R}^{\prime}	$\mathrm{rad} / \mathrm{sec}$	CH (116)	Governor rear rotor angular velocity
PCTTP		HP		Uncorrected topping power
PERL	${ }^{\text {P }}$ er (L)			Left engine power error
PERR	Per (R)			Right engine power error
FOWERL	$\mathrm{P}_{(L)}$			Left engine power available
POWERR	${ }^{P}(\mathrm{R})$	\dagger		Right engine powe available
POWOMEGA		\%		Percent topping power

TABLE 5A.- CONCLUDED.

Simulation mnemonic	Engineering variable	Units	$\begin{aligned} & \text { Common } \\ & \text { location (if } \\ & \text { applicable) } \end{aligned}$	Physical description
QGOVF		$\mathrm{ft}-1 \mathrm{~b}$	CH (257)	Forward rotor shaft spring torque
QGOVR		$\mathrm{ft}-1 \mathrm{~b}$	CH (258)	Rear rotor shaft spring torque
QCOVFl		$\mathrm{ft}-1 \mathrm{~b}$		Forward rotor resistive torque
QGOVRI		$\mathrm{ft}-1 \mathrm{~b}$		Rear rotor resistive torque
QGOV1		$\mathrm{ft}-1 \mathrm{~b}$		
TAUPWRL	${ }^{\tau} \mathrm{Pwr}_{(\mathrm{L})}$	sec		Gas generator dynamics time constant, left engine
TAUPWRR	${ }^{\tau_{P W r}}(R)$			Gas generator dynamics time constant, right engine
TIME	t			Actual clock time
TIMESL				Time out of fuel control actuator deadband, left engine
TIMESR		\checkmark		Time out of fuel control actuator deadband, right engine
TORQUEL	Q_{L}	$\mathrm{ft}-1 \mathrm{~b}$		Left engine torque available
TORQUER	Q_{R}	$\mathrm{ft}-1 \mathrm{~b}$		Right engine torque available
TPL		HP		Left engine topping power
TPR		HP		Right engine topping power

TABLE 6.- ENGINE SUBROUTINE TRANSFER VARIABLES.

table 7a.- CONTRUL Subroutine variable definition

jimulation mnemonic	Engineering variable	Units	$\begin{gathered} \text { Common } \\ \text { 1ceation (if } \\ \text { applicable) } \end{gathered}$	Physical description
. 1 ICFRC	${ }^{A_{1}^{\prime}}{ }_{c}$	${ }^{\text {rad }}$	CH (39)	Forward rotor lateral cyclic pitch, body reference frame
AICRRC	$A_{1_{c_{R}}^{\prime}}^{\prime}$		CH(38)	Rear rotor lateral cyclic pitch, body reference frame
BICFRC	${ }^{B_{1}}{ }_{c_{F}}^{\prime}$		CH (37)	Forward rotor longitudinal cyclic pitch, body reference frame
BICRRC	${ }^{B_{1 c_{R}}^{\prime}}$		CH(36)	Rear rotor longitudinal cyclic pitch, body reference frame
CFPP	$1-\mathrm{e}^{-\mathrm{T} / \tau_{\mathrm{FPP}}}$			Forward rotor pivoting-actuator-dynamics parameter
CFSP	$1-e^{-T / \tau} F S P$			Forward rotor swiveling-actuator-dynamics parameter
CLCF	$1-e^{-T / \tau_{L C F}}$			Forward rotor longitudinal cyclic actuator dynamics parameter
CLCR	$1-e^{-T / \tau_{L C R}}$			Rear rotor longitudinal cyclic actuator dynamics parameter
CRPP	$1-e^{-T / \tau_{R P P}}$			Rear rotor pivoiing actuator dynamics parameter
CRSP	$1-e^{-T / \tau} R S P$	\downarrow		Rear rotor swiveling actuator dynamics parameter
DAICFRC	${ }^{A_{1}^{\prime}}{ }_{c_{F}}^{\prime}$	deg		Forward rotor lateral cyclic pitch, body reference frame
DaICRRC	${ }^{A_{I}^{\prime}} c_{R}$	deg		Rear rotor lateral cyclic pitch, body reference frame

table 7a.- CONTINUED.

Simulation mnemonic	Engineering variable	Units	$\begin{gathered} \text { Common } \\ \text { location (if } \\ \text { applicable) } \end{gathered}$	Physical description
DBICFRC	${ }^{B_{1_{c_{F}}^{\prime}}^{\prime}}$	$\square^{\text {deg }}$		Forward rotor longitudinal cyclic pitch, body reference frame
DBICFRCN				Forward rotor longitudinal cyclic actuator input
UBICRRC	${ }^{B_{1}}{ }_{c_{R}}^{\prime}$			Rear rotor longitudinal cyclic pitch, body reference frame
DBICRRCN	${ }^{B_{1}}{ }_{c_{R}}^{\prime}$	\downarrow		Rear rotor longitudinal cyclic pitch, actuator input
DCOLTOT	${ }^{\delta}{ }_{c_{\mathrm{TOT}}}$	in.	CH(210)	Collective control input ($=$ pilot + ECS)
DCPT	$\delta_{B_{D C}}$	in.		Differential collective pitch trim contribution to longitudinal cyclic input
dlattot	${ }^{\delta} \mathrm{A}_{\mathrm{TCT}}$	in.	CH(207)	Lateral cyclic control input ($=$ pilot + SAS/ECS)
dlontot	$\delta_{B_{\text {TOT }}}$	in.	CH(208)	Longitudinal cyclic control input ($=$ pilot + SAS/ECS + DCPT)
DTHOFRC	${ }^{\theta_{0}^{\prime}}{ }^{\prime}$	deg		Forward rotor collective pitch, body reference frame
DTHORRC	${ }^{9}{ }^{\prime}{ }_{R}$			Rear rotor collective piich, body reference frame
DYAWTOT	${ }^{\delta} \mathrm{R}_{\mathrm{TOT}}$		$\mathrm{CH}(209)$	Directional control input ($=$ pilot + SAS/ECS)
EXPFPP	$e^{-T / \tau_{F P P}}$	\ddagger		Forward rotor upper boost pivoting actuator dynamics parameter

TABLE 7A.- CONTINUED.

Simulation mnemonic	Engineering variable	Units	Common location (if app1icable)	Physical description
EXPFSP	$e^{-T / \tau} F S P$	deg		Forward rotor upper boost swiveling actuator dynamics parameter
EXPRPP	$e^{-T / \tau} R P P$			Rear rotor upper boost pivoting actuator dynamics parameter
EXPRSP	$e^{-T / \tau} R S P$			Rear rotor upper boost swiveling actuator dynamics parameter
EXPTLCF	$e^{-T / \tau} L C F$			Forward rotor longitudinal cyclic actuator dynamics parameter
EXPTLCR	$\mathrm{e}^{-\mathrm{T} / \tau_{L C R}}$			Rear rotor longitudinal cyclic actuator dynamics parameter
THOFRC	θ_{0}^{\prime}	rad	$\mathrm{CH}(42)$	Forward rotor collective pitch, body reference frame
THORRC	$\theta_{0}^{\prime}{ }_{R}$	rad	CH (43)	Rear rotor collective pitch, body reference frame
THTAF	${ }^{\theta} \mathrm{AF}$	deg		Forward rotor lateral control input converted to equivalent swashplate deflection
THTAR	${ }^{\theta} \mathrm{AR}$			Rear rotor lateral control input converted to equivalent swashplate deflection
THTBF	$\theta_{B F}$	i		Forward rotor longitudinal control input converted to equivalent swashplate deflection
THTBR	$\theta_{\text {SR }}$	\downarrow		Rear rotor longitudinal control input converted to equivalent swashplate deflection

TABLE 7A.- CONTINUED.

Simulation mnemonic	Engineering variable	Units	Common location (if applicable)	Physical description
THTCF	${ }^{\text {CFF }}$	deg		Forward rotor collective control input converted to equivalent swashplate deflection
THTCR	${ }^{\theta} \mathrm{CR}$			Rear rotor collective control input converted to equivalent swashplate deflection
THTRF	$\theta_{\text {RF }}$			Forward rotor directional control input converted to equivalent swashplate deflection
THTRR	$\theta_{\text {RR }}$			Rear rotor directional control input converted to equivalent swashplate deflection
THTFPP	${ }^{\theta} \mathrm{FPP}$			Unlimited input to forward rotor upper-boost pivoting actuator
THTFPPD	$\theta_{\text {FP }}$			Forward rotor pivoting actuator output
THTFSP	${ }^{\theta} \mathrm{FSP}$			Unlimited input to forward rotor upper boost swiveling actuater
THTFSPD	${ }^{\theta} \mathrm{FS}$			Forward rotor swiveling actuator output
THTLCF	${ }^{\text {LCF }}$			First stage mixing box output (vertical/longitudinal), forward rotor
THTLCR	${ }^{\theta}$ LCR			First stage mixing box output (vertical/longitudinal), rear rotor
THTRF	$\theta_{R F}$			Directional input converted to equivalent swashplate deflection, forward rotor
THTRPP	$\theta_{\text {RPP }}$			Unlimited input to rear rotor pivoting actuator
THTRPFPD	${ }^{\text {R }}$ P	\downarrow		Rear rotor pivoting actuator output

TABLE 7B. - CONTROL CONSTANTS AND CONVERSION FACTORS

Simulation mnemonic	Engineering variable	Units	Common location (if applicable)	Nominal value	Physical description
AlCAF		deg/in.		1.91	Conversion factor between lateral cyclic position and equivalent swashplate deflection, forward rotor
AlCAR		deg/in.		1.91	Conversion factor between lateral cyclic position and equivalent swashplate deflection, rear rotor
AlCRF		deg/in.		3.18	Conversion factor between pedal position and equivalent swashplate deflection, forward rotor
AlCRR		deg/in.		3.18	Conversion factor between pedal position and equivalent swashplate deflection, rear rotor
BICSLP		deg/knot		. 075	Slope of longitudinal cyclic schedule curve (forward and rear rotors)
BP1		knot		60	Breakpoint of longitudinal cyciic schedule curve (forward and rear rotors)
BP2		knot		120	Breakpoint of longitudinal cyciic schedule curve (forward and rear rotors)
C1					
C2					
DATOTIC	$\delta^{\mathrm{A}_{\text {TOT }}}{ }^{\text {I.C. }}$	in.			Lateral axis initialization value when ECS is on
DBTOTIC	$\delta_{\mathrm{B}_{\mathrm{TOT}}}{ }^{1} \mathrm{I} . \mathrm{C} .$				Longitudinal axis initialization value when ECS is on
DCOLLL				0	Collective position lower limit
DCOLUL		\downarrow		9.12	Collective position upper limit

TABLE 7B.- CONTINUED.

Simulation mnemonic	Engineering variable	Units	Common location (if applicable)	Nominal value	Physical description
DCTOTIS	$\left.\delta^{c_{\text {TOT }}}\right\|_{\text {I. }}$ c.	in.			Collective initialization value when ECS is on
DLATLL				-4.18	Lateral cyclic position lower limit
DLATUL				+4.18	Lateral cyclic position upper limit
DLONLL				-6.5	Longitudinal cyclic position lower limit
DLONUL				+6.5	Longitudinal cyclic position upper limit
DRTOTIC	$\delta^{\mathrm{R}_{\text {TOT }}}{ }^{\text {I.C. }}$				Directional axis initialization value when ECS is on
DYAWLL		\downarrow		-3.6	Pedal position lower limit
DYAMTI				+3.6	Pedal position upper limit
D2R		$\mathrm{rad} / \mathrm{deg}$		$1 / 57.3$	Conversion factor between degrees and radius
HALE				. 5	
ONFOT2				1.2	
TFPP	${ }^{\tau}$ FPP			TBD	Forward rotor pivoting actuator time constant
TFSP	${ }^{\tau}$ FSP			TBD	Forward rotor swiveling actuator time constant
THTFPPLL		deg		-11.65	Forward rotor pivoting actuator lower limit
THTFPPUL		deg		46.35	Forward rotor pivoting actuator upper limit
THTFSPLL		deg		-11.65	Forward rotor swiveling actuator lower limit
THTESPUL		deg		46.35	Forward rotor swiveling actuator upper limit

TABLE 7B.- CONTINUED.

Simulation mnemonic	Engineering variable	Units	Conmon iocation (if applicable)	Nominal value	Physical definition
THTOBF		deg/in.		. 615	Conversion factor between longitudinal cyclic position and equivalent swashplate displacement, forward rotor
THTOBR		deg/in.		. 615	Conversion factor between longitudinal cyclic position and equivalent swashplate displacement, rear rotor
THTOCF		deg/in.		1.86	Conversion factor between collective position and equivalent swashplate displacement, forward rotor.
THOCR		deg $/$ in.		1.86	Conversion factor between collective position and equivalent swashplate displacement, rear rotor
THTRPPLL		deg		-11.65	Rear rotor pivoting actuator lower limit
THTRRPUL				46.35	Rear rotor pivoting actuator upper limit
THTRSPLL				-11.65	Rear rotor swiveling actuator lower limit
THTRSPUL				46.35	Rear rotor swiveling actuator upper limit
THTRYYFLL				-16.5	Forward rotor cumulative lateral stop lower 1imit
THTRYFLI				+15.5	Forward rotor cumulative lateral stop upper limit
THTRYRLL				-16.5	Rear rotor cumulative lateral stop lower limit
THTRYRUL				+16.5	Rear rotor cumulative lateral stop upper limit
THTTE	${ }^{\theta} \mathrm{TF}$	\downarrow		7.85	Forward rotor root collective pitch with cockpit collective lever full down

TABLE 7B.- CONCLUDED.

Simulation mnemonic	Engineering variable	Units	Common location (if applicable)	Nominal value	Physical description
THT \sim R	${ }^{9}$ TR	deg		7.85	Rear rotor root collective pitch with cockpit collective level full down
TLCF	${ }^{\tau}$ LCF	sec		TBD	Forward rotor langitudinal cyclic actuator time constant
TLCR	${ }^{\tau}$ LCR			TBD	Rear rotor longitudinal cyclic actuator time constant
TRPP	$\tau_{\text {RPP }}$			TBD	Rear rotor pivoting actuator time constant
TRSP	${ }^{\tau}$ RSP	\downarrow		TBD	Rear rotor swiveling actuator time constant

TABLE 8.- CONTROL SUBROUTINE TRANSFER VARIABLES

TABLE 9A.- SAS SUBROUTINE VARIABLE DEFINITION

Simulation mnemonic	Eagineering variablє	Units	Common location (if applicable)	Physical description
AA				(4 by 1) matrix used in FACT/UPDATE calculation of SAS filtering algorithms
AY1				(2 by 1) matrix used in FACT/UPDATE calculation of SAS filtering algorithms
AY2				(2 by 1) matrix used in FACT/UPDATE calculation of SAS filtering algorithms
BB				(4 by 1) matrix used in FACT/UPDATE caiculation of SAS filtering algorithms
BETAFSL	BFUS ${ }^{\text {1 }} 1 \mathrm{~m}$	rad		Fuselage sideslip angle limited to $\pm \pi / 2 \mathrm{rad}$.
BY1				(2 by 1) matrix used in FACT/UPDATE calculation of SAS filtering algorithms
BY2				(2 by 1) matrix used in FACT/UPDATE calculation of SAS filtering algorithms
CC				(4 by 1) matrix used in FACT/UPDATE calculation of SAS filtering algorithms
CR1	$1-e^{-T / \tau_{R_{1}}}$	-		Directional SAS filtering parameter (rate damping)
CR5	$1-e^{-T / \tau R_{5}}$	-		Static port dynamics parameter
CR6	$1-\varepsilon^{-T / \tau_{\kappa_{6}}}$			Directional SAS filtering parameter (turn coordination)
CYl				(2 by 1) matrix used in FACT/CPDATE calculation of SAS filtering algorithms

TABLE 9A.- CONTINUED.

TABLE 9A.- CONTINUED

Simulation memonic	Engineering variable	Units	Common location (if aprlicable	Physical description
DYAWSAS	$\delta^{\text {R SAS }}$	in.	CH (19)	Directional SAS actuator displacement
DY1				(2 by 1) matrix used in FACT/UPDATE calculation of SAS filtering algorithms
0×2				(2 by 1) matrix used in FACT/UPDATE calculation of SAS filtering algorithms
EXPTR1	$e^{-T / \tau_{1} R_{l}}$	-		Directional SAS filtering parameter (rate damping)
EXPTR5	$e^{-T / \tau_{2}}$	-		Directional SAS filtering parameter $\left(N_{8}\right.$ stabilization)
EXPTR6	$\mathrm{e}^{-\mathrm{T} / \tau} \mathrm{R}_{6}$	-		Directional SAS filtering parameter (turn coordination)
EXPT5	$e^{-T / \tau} R_{5}$	-		Lateral SAS filtering parameter
GKDPDR	$\mathrm{K}_{\Delta \mathrm{p}_{\delta_{R}}}$	$\frac{\text { in. pedal }}{\text { in. } \mathrm{H}_{2} \mathrm{O}}$		Velocity dependent sideslip SAS gain
PBG		in.		Helicopter roll rate converted to inches of equivalent lateral cyclic displacement
PB1				Helicopter roll rate converted to inches of equivalent pedal displacement
QBG				Helicopter pitch rate converted to -nches of equivalent longitudinal cyclic displacement
RBG		\dagger		Helicopter yaw rate converted to inches of equivalent pedal displacement

TABLE 9A.- CONCLUDED.

Simulation mnemonic	Engineering variable	Units	Conmon location (if applicable	Physical description
RBGI		in.		Directional SAS parameter (2 by 1) matrix used in FACT/UPDATE calculation of SAS filtering algorithms (2 by 1) matrix used in FACT/UPDATE calculation of SAS filtering algorithms

table 9b.- SAS CONSTANTS AND CONVERSION factors

Simulation mnemonic	Engineering variables	Units	Common location (it applicable)	Nominal value	Physical description
ALONLIM		in.		± 1.7	Longitudinal SAS actuator limits
ALATLIM		in.		± 1.0	Lateral SAS actuator limits
ADISLIM		in.		± 1.68	Directional SAS actuator limits
Ck	$\left\{\operatorname{L.1}\left(\frac{9}{4}\right) \sin \left(2 \times 52^{\circ} ;\right\}\right.$			2.4015	Sideslip SAS constant
DP INH20		$\frac{\text { in. } \mathrm{H}_{2} \mathrm{O}}{\mathrm{lb} / \mathrm{ft}^{2}}$. 1529	Conversion factor between dynamis pressure in $1 b / \mathrm{ft}^{2}$ and inches of water
GKPDR	$K_{l_{R}}$	$\frac{\mathrm{in}}{\mathrm{rad} / \mathrm{sec}}$		5.77	Directional SAS conversion factor between roll rate and inches of equivalent pedal displacement
GKPDS	${ }^{K} \mathbf{p}_{S_{A}}$	$\frac{\mathrm{in}^{2}}{\mathrm{rad} ; \mathrm{sec}}$		4.0	Lateral SAS conversion factor between roll rate and inches of equivalent lateral cyclic displacement
GKQDB	$\mathrm{K}_{\mathrm{q}_{\delta_{R}}}$	$\frac{\mathrm{in}}{\mathrm{rad} / \mathrm{sec}}$		16.0	Longitudinal SAS conversion factor between pitch rate and inches of equivalent longitudinal cyclic displacement
GKRDR	${ }^{K_{r}}{ }_{S_{R}}$	$\frac{\mathrm{in} .}{\mathrm{rad} / \mathrm{sec}}$		9.4	Directional SAS conversion factor between yaw rate and inches of equiva?ent pedal displacement
HALF			CH (109)	. 5	
PIOV2			$\mathrm{CH}(20)$	$\pi / 2$	
TR1	${ }^{\tau_{k 1}}$	sec.		.i	Directional SAS time constant (rate damping)

[ABLE 9B.- CONCLUDED.

Simulation mnemonic	Engineering variables	Units	Common lucation (if applicable)	$\begin{gathered} \text { Nominal } \\ \text { value } \end{gathered}$	Physical description
TR2	${ }^{\tau} \mathrm{R}_{2}$	sec		3.2	Directional SAS time constant (rate damping)
TR3	${ }^{\tau} \mathrm{R}_{3}$			1.6	Directional SAS time constant (rate damping)
TR4	${ }^{\tau} \mathrm{R}_{4}$			3.2	Directional SAS time constant (rate damping)
TR5	${ }^{\tau} \mathrm{K}_{5}$. 2.5	Directional SAS static port dynamics tine constant (N_{3} stabilization)
TR6	${ }^{5} \mathrm{R}_{6}$			3.2	Directional SAS tine constant (turn coordination)
T1	${ }^{2} 1$. 37	Longitudinal SAS time constant
T2	τ_{2}			2.0	Longitudinal SAS time constant
T3	: 3			3.5	Longitudinal SAS time constant
T4	τ_{4}			20.0	Longitudinal SAS time constant.
T5	T_{5}	\dagger		. 05	Lateral SAS time constant

TABLE lU.- SAS SUBROUTINE TRANSFER VARIABLES

Input variables			Output variables		
Variable	Common location	Subrout ine of origin	Variable	Common location	Subroutine of destination
BETAFS	CH (59)	AERO ।	DLATSAS	$\mathrm{CH}(17)$	CONTROL
SQFS	CH (110)	AERO ।	DIONSAS	CH (18)	CONTROL
PB	A (37)	SMART ,	DYAWSAS	CH (19)	CONTROL
QB	A(38)				
RB	A(39)	1			
VEQ	A(75)	1			
QBAK	A(178)	\dagger			

TABLE 11.- ECS SUBROUTINE TRANSFER VARIABLES.

Input variables			Output variables	
Variable	$\begin{gathered} \text { Common } \\ \text { location } \end{gathered}$	$\begin{gathered} \text { Subroutine of, Variable } \\ \text { origin }, \end{gathered}$	Common location	Subroutine of destination
DCOLP	CH (.206)	Simulator cab I DCOLECS	CH (275)	CONTROL
DLATP	CH(203)	Simulator cab I DLATECS	$\mathrm{CH}(272)$	CONTROL
DLONP	CH (204)	Simulator cab I DLONECS	CH(273)	CONTROL
DYAWP	CH (205)	Simulator cab I DYAWECS	CH. (274)	CONTROL

table 12A.- SLing subroutine variable definition

Simulation mnemonic	Engineering variable	Units	$\begin{gathered} \text { Common } \\ \text { location (if } \\ \text { applicable) } \end{gathered}$	Physical description
ALFSL	${ }^{\alpha}$ SL	rad	CH(703)	Slung load angle of attack
ALFSLD	${ }^{\alpha}$ SL	deg		
ALML	λ_{L}	rad	CH(259)	Slung load lateral cable sway angle
ALMLD	$\dot{\lambda}_{L}$	$\mathrm{rad} / \mathrm{sec}$		
ALMLDD	$\ddot{\lambda}_{L}$	$\mathrm{rad} / \mathrm{sec}^{2}$		
ALMLIC	${ }^{\lambda} \mathrm{L}_{\text {IC }}$	rad		Initial value of load lateral cable sway angle
AMUL	μ_{L}	rad	$\mathrm{CH}(260)$	Slung load longitudinal cable sway angle
AMCLD	$\dot{\mu}_{L}$	$\mathrm{rad} / \mathrm{sec}$		
AMULDD	$\ddot{\mu}_{L}$	$\mathrm{rad} / \mathrm{sec}^{2}$		
AMLLIC	${ }^{L_{L}}$ IC	rad		Initial value of load longitudinal cable sway angle
ANARSL	$\mathrm{N}_{\text {AER }} \mathrm{L}$	$\mathrm{ft}^{\text {- }} \mathrm{b}_{\mathrm{f}}$	CH(256)	Yawing moment about slung load center of gravity, helicopter body reference frame
ANQSL	$\left(\frac{N}{q}\right)_{S L}$	ft^{3}		Normalized slung load yawing moment
ANUL	"L	rad	CH (261)	Slung load lateral differential cable angle
AvULD	$\dot{\nu}_{L}$	$\mathrm{rad} / \mathrm{sec}$		

TABLE 12A.- CONTINUED.

TABLE 12A.- CONTINUED.

Simulation mnemonic	Engineering variable	Units	$\begin{gathered} \text { Commo: } \\ \text { locaticn (if } \\ \text { applicable) } \end{gathered}$	Phys cal description
BNSL	$\frac{J_{L}}{m_{L} L_{L}^{2}}$	-		
BPSL	$\frac{L_{L}+R_{L}}{L_{L}}$	-		
BqSL	$\frac{J_{L}}{m_{L} L_{L}^{2}}-\frac{L_{L}+R_{L}}{L_{L}}$	-		
BSSL	$\frac{\mathrm{g}}{\mathrm{~L}_{\mathrm{L}}}$	$1 / \mathrm{sec}^{2}$		
EXSL	$\mathrm{m}_{L}{ }_{L}$	slug-ft		
BXSL	$1 / \mathrm{m}_{L} \mathrm{~L}_{L}$	1/slug-ft		
CFEM19	$\frac{R_{L}{ }_{L}^{J}}{L_{L}}$	$s l u g-f t^{2}$		
COSLML	$\cos \lambda_{L}$	-		
cosmul	$\cos \mu_{L}$	-		
Cosnul	$\cos \nu_{L}$	-		
DQSL	$\left(\frac{D}{q}\right)_{S L}$	ft^{2}		Normalized slung load drag force, load hody reference frame

TABLE 12A.- CONTINUED.

Simulation mnemonic	Engineering variable	Units	Common location (if applicable)	Physical description
PBDS	$\dot{\mathrm{p}}_{\mathrm{B}}{ }_{S}$	$\mathrm{rad} / \mathrm{sec}^{2}$		Contribution to helicopter roll acceleration from slung load
QBDS	$\dot{\mathrm{q}}_{\mathrm{B}_{\mathrm{S}}}$	$\mathrm{rad} / \mathrm{sec}^{2}$		Contribution to helicopter pitch acceleration from slung load
REDS	$\dot{\mathbf{r}}_{\mathrm{B}_{\mathrm{S}}}$	$\mathrm{rad} / \mathrm{sec}^{2}$		Contribution to helicopter yaw acceleration from slung load
SINLML	$\sin \lambda_{L}$	-		
SINMUL	$\sin \mu_{L}$	-		
SINNUL	$\sin v_{L}$	-		
SLKBAR	\bar{K}_{L}	-	CH(264)	$\frac{\left[\left(m_{L} g\right)^{2}+\left(x_{A E R}\right)^{2}\right]^{1 / 2}}{m_{L}}$
SMSL	m_{L}	slugs	CH(247)	Slung load mass
SQSL	$\mathrm{q}_{¢, L}$	$1 b_{f} / \mathrm{ft}^{2}$		Slung load dynamic pressure
TEMP 1	$\frac{L^{8} L}{4 L_{L}}$	$\mathrm{ft}-1 \mathrm{~b}_{\mathrm{f}}$		
TEMP 2	$\mathrm{I}_{x x} \mathrm{I}_{z z}$	(slug-ft	$2 \mathrm{CH}(248)$	
UBDS	${ }^{\mathrm{u}_{\mathrm{B}}}{ }_{S}$	$\mathrm{ft} / \mathrm{sec}^{2}$	CH(248)	Contribution to helicopter longitudinal acceleration from slung load, helicopter body reference frame

TARLE 12A.- CONCLUDED.

Simulation mnemonic	Engineering variable	Units	$\begin{aligned} & \text { (ommon } \\ & \text { loca } \pm i o n \text { (if } \\ & \text { apt licable) } \end{aligned}$	Physical description
USL	${ }^{u} S_{L}$	$\mathrm{ft} / \mathrm{sec}$		Longitudinal velocity at the slung load c.g., helicopter body reference frame
VBDS	$\dot{\mathrm{v}}_{\mathrm{B}_{\mathrm{S}}}$	$\mathrm{ft} / \mathrm{sec}^{2}$	CH(249)	Contribution to helicopter lateral acceleration from slung load, helicopter body reference frame
VSL	${ }^{\mathrm{v}}$ SL	$\mathrm{ft} / \mathrm{sec}$		Lateral velocity at the slung load center of gravity, helicopter body reference frame
WBDS	$\dot{\mathrm{w}}_{\mathrm{B}_{\mathrm{S}}}$	$\mathrm{ft} / \mathrm{sec}^{2}$	$\mathrm{CH}(250)$	Contributio: to helicopter vertical acceleration from slung aoad, helicopter body reference frame
WLRL	$m_{L} g^{\prime} L_{L}$	$\mathrm{ft}-1 \mathrm{~b}_{\mathrm{f}}$		
WSL	${ }^{*}$ SL	$\mathrm{ft} / \mathrm{sec}$		Vertical velocity at the slung load center of gravity, helicopter tody reference frame
XAERSL	$\mathrm{X}_{\mathrm{AER}}^{\mathrm{L}},$	${ }^{1 b_{f}}$	CH(254)	Slung load draॄ force, helicopter body reference frame
YAERSL	${ }^{Y}{ }_{A E R}$	${ }^{1 b_{f}}$	$\mathrm{CH}(255)$	Slung load side force, helicopter body reference frame
YQSL	$\left(\frac{Y}{q}\right)_{S L}$	$f t^{2}$		Normalized slung load side force, lcad body reference frame

－- －

TABLE 12B.- CONCLUDED.

Simulation mnemonic	Engineering variable	Units	Common location (if applicable)	Nominal value	Physical description
THESL	$\theta_{\text {SL }}$	rad	CH(269)		Angle between load x-axis and helicopter x-axis
WGHTSL	W_{L}	$1 \mathrm{~b}_{\mathrm{f}}$		7500.	Slung load weight

TABLE 13.- SLING SUBROUTINE TRANSFER VARIABLES, inPUT DATA AND LOGICAL Flaçs.

TABLE 14.- REQUIRED INPUT DATA FOR OPERATIONAL SIMULATIONS

Varlable	Common location	Units	Physical description
DXCG	$\mathrm{CH}(68)$	in.	Position of actual helicopter
DYCG	CH (69)	in.	e.g. relative lo its refer-
DZCG	$\mathrm{CH}(70)$	in.	ence (fig. 30)
WAITIC	A (242)	$1 b_{f}$	Helicopter weight
XIXXIC	A (243)	slug-ft ${ }^{2}$	Helicopter moments and prod-
XIYYLC	A (244)	slug-ft ${ }^{2}$	uct of inertia
XIZZIC	A (245)	slug-ft ${ }^{2}$	
XIXZIC	A (246)	slug-ft ${ }^{2}$	
XP	A(171)	ft	Position of pilot, in heli-
YP	A(172)	ft	copter body axes, relative
ZP	A(173)	ft	to c.g. of aircraft

URIGINAL PAGE IS
OF POOR QUALITY

Figure 1.- CH-47B helicopter.

URIGINAL PAGE IS
 OF POOR QUALITY

Figure 2.- Rotor signal flow diagram.

OF POOR H MatTY

Oor signal flow diagram.

Figure 3.- Helicopter rotor center of gravity positions relative to rotorcraft center of gravity (ref. i).

Figure 4.- Actual versus baseline helicopter center of gravity position.

PREGEDING pACN ITANK NOT FILMED

ORIGN:
OF POOR exnity

Figure 5.- Reference frame transformation through shaft incidence angles.

Figure 6.- Reference frame transformation through rotor sideslip angles.

Figute 7.- Modificaticn of rotor swashplate arrangement for pitch-flap coupling (ref. 11).

Uriz.a.
OF POOF Vu, :mis.

Figure 8.- Correction of cyclic pitch inputs for phasing angle, $\phi_{P_{F}}$.
(?:
OFP Funa :s.

$\begin{aligned} & \mathrm{C}_{\boldsymbol{T}} /\left.\sigma\right|_{\text {UNCORRECTED }} \leqslant 0.216 \\ & \mu \leqslant 0.25: \mathrm{C}_{\boldsymbol{T}} /\left.\sigma\right|_{\text {CORRECTED }}=-3.572\left(\mathrm{C}_{\boldsymbol{T}} / \sigma\right)^{2}+1.5494\left(\mathrm{C}_{\boldsymbol{\top}} / \sigma\right)-0.02095 \\ & \mu \geqslant 0.35: \mathrm{C}_{\boldsymbol{T}} /\left.\sigma\right|_{\text {CORRECTED }}=-2.737\left(\mathrm{C}_{\mathbf{T}} / \sigma\right)^{2}+1.2884\left(\mathrm{C}_{\mathbf{T}} / \sigma\right)-0.006776\end{aligned}$
$0.25<\mu<0.35$: INTERPOLATE BETWEEN VALUES
$\mathrm{C}_{\boldsymbol{T}} / \sigma \mid$ UNCORRECTED $>0.216: \mathrm{C}_{\boldsymbol{T}} / \sigma \mid$ CORRECTED $=\mathrm{C}_{\boldsymbol{T}} / \sigma \mid$ UNCORRECTED

Figure 9.- Rotor stall thrust coefficient correction (subroutine RSTALL).

Figure 10.- Altitude dependent term for thrust modification due to ground effect.

Figure 11.- Rotor stall torque coefficient correction (subroutine RSTALL).

C．
Of トữに メ…．．．．．．

WHERE $\Delta \mathrm{C}_{\mathrm{O}_{\mathrm{F}, \mathrm{R}}}$ IS COMPUTED AS FOLLOWS：
IF $\mu \leqslant 0.1: \Delta C_{Q_{F, R}}=0.000833\left(0.088-\mu_{F, R}\right)+0.01753\left(C_{r_{F, R}}-0.0062\right)$
IF $0.1<\mu \leqslant 0.2: \Delta C_{Q_{F, R}}=0.0002\left(\mu_{F, R}-0.1\right)-0.00001+0.01753\left(C_{T_{F, R}}-0.0062\right)$
IF $0.2<\mu \leqslant 0.3: \Delta \mathrm{C}_{\mathrm{Q}_{\mathrm{F}, \mathrm{R}}}=0.00042\left(\mu_{\mathrm{F}, \mathrm{R}}-0.2\right)+0.000006+0.01753\left(\mathrm{C}_{\mathrm{T}_{\mathrm{F}, \mathrm{R}}}{ }^{-0.0062)}\right.$
IF $\mu>0.3: \Delta \mathrm{C}_{\mathrm{Q}_{\mathrm{F}, \mathrm{R}}}=0.0016\left(\mu_{\mathrm{F}, \mathrm{R}}-0.3\right)+0.000048+0.01753\left(\mathrm{C}_{\mathrm{T}_{\mathrm{F}, \mathrm{R}}}-0.0062\right)$
$1 F \Delta C_{Q_{F, R}}<-0.00001: \Delta C_{Q_{F, R}}=-0.000^{\sim}$
Figure 12．－Empirical correction of rotor torque coefficient （in－line calculation）．

Figure 13．－Rotor－on－rotor interference terms：$d_{F}^{\prime} \quad$（forward $\left.f 1 i g h t\right)$ and and ${ }^{d}{ }_{F}{ }_{R F}$（rearward flight）．${ }^{\text {FR }}$

URICINES of pocir Ci...

Figure 14.- Rotor-on-rotor interference terms: $\mathrm{d}_{\mathrm{F}}^{\prime}$ (forward fiight) and and $\mathrm{d}_{\mathrm{FR}}^{\prime}$ (rearward flight). ${ }^{R}$

Figure i5.- Rotor on rotor interference term.

ORIGINAL PREAL
OF POOR QUALITY

Figure 16.- Fuselage drag data (table: FDOQT).

Figure 17.- Fuselage sideforce data (table: FYOQT).

Figure 18.- Fuselage lift data (table: LTOQ'T).

OFici:
OF POOt (

Figure 19.- Fuselage rolling moment data (table: FLOQT).
C....

OF POLZ (.......

Figure 20.- Fuselage pitching moment data (table: FMOQT).

Figure 21.- Fuselage yawing moment data (table: FNOQT).

Figure 22.- Actual helicopter versus wind tunnel model center of gravity.

ORS

OF POOR QUABin

Figure 23.- Engine, governor, and shaft dynamira block diagram.

$$
\because \mathrm{Fe}
$$

vernon, and shaft dynamics bluck diagram.

OF FCuR Quminit

Figure 24.- Computation of $N_{2} \delta_{\mathrm{C}}$ as a function of ${ }^{\delta} \mathrm{C}_{\mathrm{TOT}}$.

Figure 25.- Determination of fuel control actuator position, $\mathrm{N}_{\mathrm{R}_{\phi}}$.

ORIGNAL PE:
OF POOR QUALITY

Figure 26.- Power dynamics time constant (table: POWT, TAUPT).

Figure 27.- Variable power limits (table: POWERT, E27T).
Ci..

OF PCOR Qu...

Figure 28.- N_{1} lever topping power correction term (table: ENGVLT, E20T).

Figure 29.- $\tau_{p w r}$ modifier (in-1ine calculation).

Figure 30.- Percent topping power (table: OMEGAT, POMEGT).

Figure 3l.- Unlimited commanded power calculation.

dgure 32.- Mechanical control system schematic.

hanical control system schematic.

ORGGI:

foldout rramia

Figure 33.- Longitudinal cyclic position gradient stabilization with differential collective pitch trim.

Figure 34.- Longitudinal cyclic differential collective pitch input (table: VDCP, DCPTT).

Figure 35.- Longitudinal stability augmentation system.

Figure 36.- Lateral stability augmentation system.

OF fucis e........:

Figure 37.- Directional stability augmentation system.

Figure 38.- Velocity dependent sideslip SAS gain (table: VEQSST, GKDPT).

Figure 39.- Sideslip SAS actuator limits.

Q:'..
Of ro

SAS OFF
$\delta_{B}=0.25 \mathrm{in} . \times 1 \mathrm{sec}$ PULSE
$M q=-1.1$

Figure 40.- Longitudinal axis dynamic response SAS OFF and ON; hover, weight $=33,000 \mathrm{lb}$, nominal c.g. position.

ORIGINA:
OF POOR Q:IN:

Figure $41 .-$ Lateral axis dynamic response, $S A S$ OFF and $O n$; hover, weight $=33,000 \mathrm{lb}$, nominal c.g. position.

ORIGINAL PRA. OF POOR QUALITS

Figure 42.- Directional axis dynamic response SAS OFF and On; hover, weight $=33,000 \mathrm{lb}$, nominal $\mathrm{c} \cdot \mathrm{g}$. position.

Figure 43.- Longitudinal axis dynamic response SAS OFF and On; $\mathrm{V}_{\mathrm{eq}}=75$ knots, weight $=33,000 \mathrm{lb}$, nominal c.g. position.

On
OF PuJi: : . : .

$$
\delta_{A}=0.25 \text { in. } \times 1 \sec \text { PULSE }
$$

$$
L_{p}=-1.04
$$

$\delta_{A}=1$ in. $\times 1$ sec PULSE
$L_{P}=-1.92$

Figure 44.- Lateral axis dynamic response $S A S O F$ and $O N$; $\mathrm{V}_{\mathrm{eq}}=75$ knots, weight $=33,000 \mathrm{lb}$, nominal c.g. position.

UmGonn PAGE IS OF POOR QUALITY

Figure 45.- Dixectional axis dynamic response SAS OFF and ON; $\mathrm{V}_{\mathrm{eq}}=75$ knots, weight $=33,000 \mathrm{lb}$, nominal c.g. position.

PAGE IS of ruvir quality

Figure 46.- Longitudinal axis dynamic response SAS OFF and ON; $\mathrm{V}_{\mathrm{eq}}=130$ knots, weight $=33,0001 \mathrm{~b}$, nominal c.g. position.
UnGilkan rem: m OF POOR Quanis

$$
\begin{gathered}
\delta_{A}=0.25 \text { in. } \times 1 \text { sec PULSE } \\
L_{P}=-0.93
\end{gathered}
$$

$$
\delta_{A}=1 \text { in. } \times 1 \text { sec PULSE }
$$

$$
L_{p}=-1.83
$$

Figure 47.- Lateral axis dynamic response SAS OFF and ON; $\mathrm{V}_{\mathrm{eq}}=130$ knots, weight $=33,000 \mathrm{lb}$, nominal c.g. position.

Figure 48.- Directional axis dynamic response SAS OFF and ON; $\mathrm{V}_{\mathrm{eq}}=130$ knots, weight $=33,000 \mathrm{lb}$, nominal c.g. position.

ORIGINAL PAGE IG OF POOR QUALITY

Figure 49.- Slung load geometry (fig. 6.1 of ref. 1).

WRE:\%
OF POOR Quadiry

Figure 50.- Slung lrad drag force (table: SLDQT).

Figure 51.- Slung load side force (tab1e: SLYQT).

Figure 52.- Slung-1oad yawing moment (table: SLN(2T).

[^0]: $A_{F}=12 I_{F} / \rho a_{F} c_{F} R_{B_{F}}-\frac{3}{2} K_{B F}\left(I+\mu_{F}^{2}\right)$

[^1]: $\therefore \mathrm{F}_{\mathrm{F}}=\mathrm{K}_{3 \mathrm{~F}}\left(\frac{1}{4}+\frac{3}{8} \mathrm{u}_{\mathrm{F}}^{2}\right)$

[^2]: $\therefore\left(\lambda_{F}^{\prime}-\lambda_{F}\right) R_{B F}\left(\Omega_{F}^{\prime}-r_{F}\right)$
 $r_{1 / R_{B_{R}}}\left(\sigma_{R}^{\prime}-r_{R}\right)$

[^3]: $a_{\triangle \mathrm{Fe}} / \sqrt{1+\tan x_{\mathrm{FUS}}^{2}}+\tan \beta_{\mathrm{FUS}}^{2}$

