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SUMMARY

I A nonlinear simulation model of the CH-47B helicopter, developed by the Boeing

Vertol Company (ref. I), has been adapted for use in the NASA Ames Research Center _'

(ARC) simulation facility. The model represents the specific configuration of the ARC _i

variable stability CH-47B helicopter (fig. 1) and will be used in ground simulation I

research and to expedite and verify flight experiment design. _I

Modeling of the helicopter uses a total force approach in six rigid body degrees
of freedom. Rotor dynamics are simulated using the Wheatley-Bailey equations,

including steady-state flapping dynamics. Also included in the model is the option
for simulation of external suspension, slung-load equations of motion.

Validation of the model (discussed in Volume II of this report) has been accom-

plished using static and dynamic data from the original Boeing Yertol mathematical
model and flight test data from references 2 and 3, as reproduced in reference 4. The

model is appropriate for use in real-time piloted simulation and is implemented on the

ARC Sigma IX computer where it may be operated with a digital cycle time of 0.03 sec.

NOMENCLATURE

AERO fuselage aerodynamics subroutine

ARC Ames Research Center

BV Boeing Vertol Company

c.g. center of gravity

CONTROL mechanical control system subroutine

DCPT differential collective pitch trim

ECS electronic control system

ENGINE engine and governor subroutine

N_ change in helicopter yawing moment per sideslip angle

" rpm revolutions per minute

ROTOR rotor dynamics subroutine

SAS stability augmentatio, system

SLING sling load dynamics subroutine



0

J!lI_. SNP shaft-normal-plane

1 i
i' SNPW shaft-nornm]-plane-wind

q

V equivalent velocity _,
eq

INTRODUCTION _ _i

_: At Ames Research Center (ARC), the CH-47B provides a unique capability for generic , I

flight research in flight controls and displays for rotorcraft and VTOL aircraft. In _i
addition to the existing potential for variable-stability flight, a programmable dis-

I play system and a variable force-feel system are being developed. The purpose of this
mathematical model development is to provide the capability for real-time simulation

_° and for the preliminary check-out of in-flight research experiments for the variable-

i stability CH-47B helicopter. _i
1

Subroutines that comprise the mathematical model describe the rotor systems,

fuselage aerodynamics, engine and governor, mechanical control system, the option for

either an electronic control system or the basic stability augmentation system (SAS),

and the option for externally suspended, slung-load dynamics. Forward and rear rotor

dynamics are simulated in a shaft-normal-plane-wind (SNPW) reference frame with the

Wheatley-Bailey (modified tip path plane) equations of references 5, 6, and 7. Steady

state flapping dynamic_ are represented with these equations; however, in-plane

motions are neglected. Forces and moments at the rotor hubs are then calculated as a

function of rotor aerodynamic conditions and dynamics, after which they are resolved

to the helicopter center of gravity. Six rigid-body forces and moments resulting

from fuselage aerodynamics are found from tabular data interpolated as a function of

fuselage angle of attack and sideslip angle.

Each engine is represented with nonlinear, second-order dynamics; left and right

engine models are identical, yet are modeled separately. The fuel control system and

gas generator are each modeled as a first-order system, the latter including a variable

time constant dependent upon power and power error. The engine governor, whose pur-

pose is to regulate rotor rpm, is modeled as a linear, third-order system.

Modeling of the hardware from the cockpit controls to the swashplate comprises

tile mechanical controls subroutine. Included are upstream limiters on each control

input, first- and second-stage mixing, swashplate limits, and swiveling and pivoting
actuation dynamics (first order).

Stability augmentation in the form of longitudinal, lateral, and directional rate
damping is modeled. Additional features of the directional SAS include turn coordina-

tion and feedback of sideslip angle to obtain a stable yawing moment change with

" sideslip (NB).

The provision for an electronic control system (ECS) model has been included in

i this program. Although no specific ECS configuration has been documented in this

report, the information necessary to integrate such a subroutine into the simulation

model is discussed in the section concerning the ECS.

A mode] of an externally suspended, slung load has been developed and is available

for use with the helicopter simulation mode]. Three state variables, defining the

position ot the load and suspension cables relative to the helicopter, are represented

____ " "-'*" 2-_" _'a_k_*e".. _ °";*" _ " _ _ _e.._



with nonlinear, second-order equations of motion. Thus, the combined system (hell- ,q

copter and slung load), is represented with nine coupled, differential equations !i
_'% modeling the two rigid bodies.

i'' 6,

_ The specifications of the real-time simulation model are presented in this
I" report, organized by subroutine. Documentation of each subroutine is characterized I.

by an engineering explanation, input/output variable lists, and the definition of 11
! , computer mnemonics in terms of engineering variables. The subroutines are discussed q,

: in the following order: rotor dynamics (ROTOR), fuselage aerodynamics (AERO), engine _i
and governor (ENGINE), mechanical control system (CONTROl.), stability augmentation I
system (SAS), electronic control system (ECS) and slung-load dynamics (SLING). I

Operational considerations are discussed, including the specification of input
constants and other information necessary for a piloted simulation using a simulator

! cab and a visual display.

!_ Finally, in Volume II of this report, results of the ARC static and dynamic model

i• validation are discussed. ARC static trim and stability derivative data are tabulated;E

also, ARC dynamic data are compared with a Boeing Vertol Company (BV) model and CH-47

flight-test data from references 2 and 3 (reproduced in ref. 4).

MATHEMATICAL MODEL DESCRIPTION

Rotors

Wheatley-Bailey (modified tip-path plane) equations (refs. 5, 6, and 7) form the
basis for the simulation of the rotors in this mathematical model. In subroutine

ROTOR, total forces and moments resulting from each helicopter rotor are computed in

the SNPW reference frame. These are then transformed to the body reference frame at

the helicopter center of gravity (c.g.) for incorporation into the six degree-of-
freedom rigid-body equations (which are part of the established Ames simulation

facility and are known as subroutine SMART (refs. 8 and 9)). _:

Figure 2 shows a signal flow diagram of the rotor subroutine (in terms of com-

puter mnemonics), including variable inputs and outputs to and from other model sub-

routines. The equations are executed sequentially as indicated by the numbered
modules in the figure. Since the calculation of rotor hub forces and moments is

required for this model, it is necessary to perform transformations between the heli-
copter body and the SNPW reference frames. To do this, the position of the actual

rotor c.g. relative to the actual helicopter c.g. (fig. 3) is computed using equa-
tion (i),

SLFR,SLRR ;F,R ;F,Rx AXc.g ./12"
q

SDFR,SDRR dF,R = dF,R - AYc.g./12 (I)
X

SHFR, SHRR hF,R hF,R AZc. /12g.

where the positions oY the baseline rotor c.g. relative to the base]ine helicopter
c.g. are given by:

! 3
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The vector , Ilj

! g°Ip

is the position in inches of the c.g. of the 3ctual helicopter relative to the base-

line specifications. Baseline helicopter c.g. positions are

c'g_ = 1331.1n2n ]

ilggJ Ll1"2 inJ

and the sign conventions are as given in figure 4.

To compute forces and moments at the rotor hub, helicopter body-axis velocities

(from subroutine SMART, rigid-body dynamics model) are transformed from the body 0

reference frame to the rotor SNPW reference frame. Representation of the body axis

velocities at the rotor hubs is given in equation (2).

. .im a . i,

UFR1,URR1 1Fl,UR1 u ,, 0 -hF, R -dF, R pBI

VFRI,VRR1 v F = VBI + 0 qB (2) ;l'VR1 hF'R _F,R

WFRI,WRRI w F w -_F 0 rBl
'WR I ;I dF,R ,R l

Body-axis velocities (at the rotor hub) are transformed (eq. (3)) from the body to

the SNP reference frame through shaft incidence angles iF,i R (fig. 5).

UFR2,URR2 cos ' 0 sin uF ,UR,UF2'UR; IF'R iF'R 1

VFR2 ,VRR2 v = 0 I 0 (3)
F2 'VR2 VFl 'VR I

_ WFR2,WRR2 -sin ' 0 w F ,WRl
WF2 ,WR2 IF, R cos iF, R I

The rotor SNP may be considered an intermediate reference frame between the helicopter

_ and SNPW reference frames.
body
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Rotor sideslip angle is defined by equation (4), 'i

BETAFR VF, R2
' = arctan---- (4) _

BETAP.R BF,R uF ,R2

and SNP translational velocities are effectively resolved (eqs. (5) and (6)) through il

• 8F,R into the SNPW reference frame, as shown in figure 6. Rotor-hub forces and I
moments are eventually computed in this frame, as indicated in the figure. _,

, UFR ,
I/ 2 (5) ,

URRUF'R= rU ,R + VF,R

WFR

WF, R = WF,R2 (6)WRR

Next, helicopter-body angular velocities (from SMART) are transformed (eqs. (7)

and (8)) to the SNPW reference lrame as shown in figure 6.

' ' ' sin iFPFR p: cos _F cos iF sin _F cos _F ,

F[ = ' ' ' sin iF (7)
QFR q -sin BF cos i F cos gF sin BF

RFR,rFl -sin iF 0 cos iF
I

! ! !

PRR[PR -cos BR cos iR -sin BR -cos BR sin PB

I ! l

QRRIqR = -sin 13R cos i R cos gR -sin gR sin i R qB (8)

RRRIr R sin iR 0 -cos iR r B

Rotor angular velocity is corrected for helicopter yaw rate in equation (9):

OMEGFR
!

f2F,R = _F,R rF,R (9)
OMEGRR

i

and rotor tip speed is calculated based on this rpm in equation (]0):

VTIPFR

' VTiPF = RB :;F,R (]0)VTIPRR ,R F,R

Advance ratio and the free stream component of inflow ratio are calculated in equa-
tions (11) and (12):

5
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AMUFR UF,R -I

'_IF'R = RBF (_',R,. - rF R) (1]) ([
AMURR

,R '
,i

ALMPFR WF, R
X' = (12)

ALMPRR F,R RBF,R(_t_,R - rF,R) ' ]

Prior to their usage in computations (i,e., for flapping coefficients and rotor _'i
forces and moments), the pilot's control inputs are transformed to the SNPW reference

frame and corrected for control phasing angle (_p) and pitch-flap coupling (_3)' Thus, ]

it is unnecessary to make these corrections during the actual c reputation of these !

quantities (as noted in the flapping assumptions which follow). Longitudinal and

lateral cyclic pitch in the SNP reference frame (from subroutine CONTROL) are trans-
formed to the SNPW reference frame in equations (13) and (14).

rA]I, A, iI
AICFRI = cos BF -sin 8 ICF (13)

BICFRI[B{c[ F2 in BF' cos B_]IB'FIIC

[A{cR'] [ ii R] I

COS S v! _CAICRRI B_ in _R

= (]4)

BICRRI L-sin_R cos 8 _C

Although the pitch-flap coupling and control phasing angles are zero in the current i
configuration of the ARC CH-47B, the capability for these variations has been included

in the simu]ation model. The purpose of the control phasing angle, _p, is to offset
the lead of the blade relative to the pitch hinge, which was introduced by pitch-flap

(_3) coupling (fig. 7, taken from ref. lO). In equations (]5) and (16), rotor cyclic

pitch positions are transformed through control phasing angle, %p (fig. 8).

AICFR2 A[CF2 os _PF -sin _p _CFI

= (15)
B'

B' tin cos _PFJ icrlJBICFR2L *PF

AICRR2 A'_CF2 'os _PR

= (16) ,

1

In equation (17), rotor cyclic and co]]ective positions are corrected for 63
(ref. i]).

,i

6
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AICFR,AICRR A,_ A[C aIF,R
"_F.R _,R2

' (17)
BICFR,BICRR B,_F.R = BzC + K bZF,R ,,_,R2 _F,R ,,

THOFR,THORR 00F,R 0'
0F,R _ .a°F'R.

where K_F,R = -tan(63F,R)' 4,

Rotor degrees of freedom are limited to feathering and the computation of steady

• state flapping and coning coefficients. No in-plane (lead-lag) degree of freedom has

been considered. Flapping and coning coefficients are computed by solving a 3×3 linear H

system of algebraic equations, and are developed based upon the following simplifying
assumptions (ref. I):

I. Only the first harmonic terms are used. i

2. There is a uniform inflow, i

3. No reverse flow is considered.

4. Identical forms for the front and rear rotors are used. q

5. There are no pitch-flap coupling effects (the control inputs are corrected
in this regard).

6. There is a zero tip-loss factor.

7. There is a negligible hinge offset.

8. Rigid blades are used.

9. There are no compressibility effects.

I0. There is a constant rotor airfoil-section lift-curve slope.

Ii. The rotor airfoil-section drag varies only with rotor angle of attack.

Steady-state flapping and coning angles are found by solving equation (18) with
Cramer's Rule. (The derivation of these equations is given in appendix A.)

AF,R BF,R CF,I aOF,R 3F, R

DF, R EF, R FF,R, aZF,R = KF, R (18)J ,

GF,R HF,R IF,R IblF,R LF, R

where:

121F,R 3

= _ 2 K_F (I + U2
AF'R PaF,RCF,RRBF,R ,R F'R)

I
W
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_'W BF, R - 0

_'I CF'R = 2_F'RK_F,R
, Oi_lGtik_,L .........

2 Kg F R_F OF POOR Q_,.._,__:.DF,R = - _ ,R
I

i

2

r I _F,R

EF,R = 4 8

FF,R = KB _+g F,
F,R

2

_f 4 UF,R

HF,R = -KB F,R

IF, R = 1.0

2_F, RB [CF 2
3 , _2 + 2X F - + 0 (1.2 + taF,R)

JF,R = 20°F,R (I + F,R ) ,R ,R2 tWF, R

i. 2 , i +t -B' [! _ _R)
I =- _F,R ICF,R2_4 +8 _F,KF,R 3 _F,R0°F,R +'2tF,RuF,R 28tWF,R

i _ 0aF,RCF,RRBF,R_F, R

Using Wheatley-Bailey theory (refs. 5-7), thrust, torque, side force, and drag at

the rotor hubs are computed. Expressions for thrust and torque follow the theory as

developed for a tandem rotor helicopter using the SNPW reference frame. Expressions

for rotor side force and drag were greatly simplified by BV during their development

because the simplified forms provided a better match with flight test data than did .,

the full theoretical expressions.
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Mean rotor thrust is computed with equation (19).

CTFRI 2CT £_ 0tWF
F,R _, I F,R + 2 + 1 1I

CTRR1 aF,R°F,R 2 _ 00F'R _ ,R

i - BIC (19) I
" + _F,R F,R °F,R + _ ,R F, 4,

i
i

" In coefficient form, thrust is modified owing to limits on its maximum allowable value, ,

for rotor stall, and due to ground effect. Since the maximum allowable normalized J

thrust coefficient, 2CT/ao, is 1.0, a limit is imposed if the computed value is

greater than 1.0. As a function of advanced ratio, normalized thrust coefficient is
modified as shown in figure 9 for the effects of rotor stall. This is an empirica]

correction which was derived by BV to provide a better match of the model's dynamic 'i
response with wind-tunnel test data and is selected (along with a correction to rotor i

torque) with flag NSTALL in the simulation model. Thrust coefficient is computed as
shown in equation (20)

/ 2CT \a

CTFR - I F'R ] F'ROF'R

CTFR CTF,R \aF,R°F,_

(20)
2

and if longitudinal velocity is less than 40 knots (and if the ground-effect correc-

tion is selected with flag NGREFF), thrust is modified for ground effect as a function

of altitude and airspeed. Thrust is calculated in equation (2!) I

= CTF p_R_ __ + K T. (21)TF'R ,R BF,R _,R g.e.F, RLg.e.F,

where

K = 1 UF'R
U (Ug.e. = 40 knots)

geF,R ge

and Ti. is determined from figure i0 as a function of the rotor height to diameterg.e.

ratio (h/D)rotor.

9
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_%. Mean aerodynamic torque required is found from equation (22)

2C '1

CQFRI

6F'R a_F R + 0.25 IC aIF,R - 3a_l,'R ;
QF,R = I_F, R .25 _lF, R .65 aF,R 'F,R ' "

CQRRI aF,R°F,R ' i

F,R :" 2 alF,
1

Qb CFR)) ) (00F' R) '

(ItwF _

AI {iF., R 2 - XF,R \ 3 R ,

+ a0F,R _ ,_. + l

----_- 1F,R 2 \2aF, R XF,R -- + 4

+ 8- ,R - • ,R - a2LF,R - b_F, (22) '_i

As a function of rotor thrust and advance ratio, the torque coefficient is modified

for rotor s_:all (flag NSTALL) as shown in figure 11. AJso, an empirical correction

is made to the torque coefficient to attain a better match with flight-test data.

This correction, the effects of which are shown in figure 12, is calculated as a func-

tion of adva'_ce ratio and thrust coefficient (flag NTRQCR). Including the two

corrections, the aerodynamic torque coefficient is:

/2C0 \

CQFR [ "F,R } aF,R:rF,RC = ' ' + _,C + ,',,C (23)

CQRR QF,R \aF,R°F,R/ 2 QF,RR.s. QF,R

and the rotor torque required is

QAERFR

QAE_, = C p_R_ _2 (24QAERRR R QF ,R F ,R

Rotor sideforce is calculated with equati_-: s (25) - (27).

CYFRI 2CYF'R = 2CTF'R blF,R + _F __ [_ (blF ' AICF,R) - _F,Ra°F,R ]
CYRRI aF,ROF,R aF,RC_F,R ,R IF,R i R -

i( I)+ 2 a°F,R _F,RBI'(,F,R - I'50°F'R - 3_F'R - _tWF,R

+ _ XF, R _IF,R - A 1 + _ a0F, R ICF, R
CF ,R

_. CYFR _ [_ F,R / aV'R°t:'R (26)
, CYR, CYF,R _aF. R_; i R/ 2 ,a

lO
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YFR

O_ _ _ (27)

YRR YF,R = CYF, R RBF,R F,g 'i

A quadratic form is assumed for blade-profile drag (eq. (28)) and the normalized-

drag (H-force) coefficient is calculated as An equation (29). "i

, DELFR _,

_F,R = _°F,R + 9_IF,RC_ F (28) _,,DELRR ,R i
I

CHFRI % 6F,R_F,R
2C ,R + (29)

. CHRRI aF,R_F,R = CTF,RalF'R 2aF,R

! Equations (30) and (31) show the calculations for rotor drag coefficient and !i-force,
respectively.

CHFR (2CHF, R _,aF,ROF, R

HFR

CHF _ >2HF, R = p_RR Q_ _ (31)
HRR ,R -F,R ....

Rolling and pitching moments at the rotor hub resulting i:rom aerodynamic forces
are found as a function of steady-state flapping angles (eqs. (32) and (33)).

AMHBFR
I 2

AMHBRR MhubF,R = _ eF'RbF'RMWF,R _F'RaIF'R (32)

ALHBFR

l bF _2 (33)
ALHBRR LhubF,R = _ eF,R 'RMWF,R F'RbIF'R

Inflow ratio dynamics, which are modeled using the ARC local linearization pro-
gram LOLIN (ref. 12), are first order and depend upon thrust, advance ratio, and an

empirically derived rotor-on-rotor interference algorithm.

iF I WF CTF RF R

= F _FRBF + 2 + ----_.-- 2 (34)• 21/7 + 2"I/ R +

iR = 'IRI{' R 'RRBRwR + 2_,_CTR+ IR, 2)&F+,,j+DFFRC--T_,2_ (35)



!

OF POOR QO_,d..ii"i" t,

i Referring to equations (34) and (35), rotor-on-rotor interference parameters DFR F

I (rear on forward) and (forward on rear) are calculated as sho_m in equation (36)DFFR
P

!" BDFFR

!, = d'. (L- Isin BFUSJ ) + Isin ] (36) "
BDFRF DFFR (RF) _FR (RF) CF a _FUS "

where dFF R and FR F are found depending upon whether the helicopter is in forward ' I
4'

or rearward flight, in figures 13 and 1/, and CF2 is found in _:igure 15. A more _i
b detailed description of the LOLIN approach to solving, equations (34) and (35) and ani _

explanation of the differences between this approach and the one used originally by _'
BV, is given in appendix B.

r, Finally, rotor forces and moments at each rotor hub are transformed to the heli-

copter c.g. These forces and moments form a portion of the total forces and moments

acting on the rigid body (helicopter) and are integrated in SMART to give the trans- 'i
lational and rotational states, i

In equations (37) and (38), forces at each rotor hub are transformed from the

SNPW to the helicopter body reference frame.

XAEPFR X\E_ _ -cos _'F cos iF -sin _F cos iF sin i H_[
'h I

= ! ! I
YAERFR YAE_: -sin $F cos _F 0 YF. (37)

ZAERI_ ZAER._ -cos _ sin iF -sin _ sin iF -co," i F TFj

! !

XAERRR ["AERq -cos _R cos iR sin BR cos iR sin iR R|

= ' ' 0 (38)
YAERRR "AEP_I -sin BR -cos BR RI

ZAERRR ' sin iR -cos iRAER_ ' sin iR sin BR-cos _R
Re

J ..I

Tota! moments at the helicopter c.g. due to the rotors have contributions from

two sources: (|) moments at the helicopter c.g. resulting from forces at the rotor

hub and (2) moments at the hub transformed to the c.g. Equation (39) shows the com-

putation of the first contribution, equations (40) and (41) show the computation of

the Jecond contribution, and equation (42) gives the summation of moments from each of
the two sources.

"I.;,ERF'- d " "X 'ALFRI,ALRRI ,F 0 hF, R F,R "AERF,

AMFR 1,AMRR 1 MIERF = 0 Y (39),R "hF'R - _'F,R AERF, R

' -d 0 ZAE
ANFR 1,ANRR 1 NAERF,R F,R _'F,R ,RF, R,

12
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,l

'_, ALFR2 ""LAERFI cos BF'cos iF -sin B_ cos iF -sin il; _'hub,p']

' ' 0 I]_ub_AMFR2 _'AER. sin 6F cos 8F (40) ,_

! ,!

ANFR2 _AER. cos BF sin iF -sin _F sin iF cos iF _!GOVF i

4'

it! " " t !

ALRR2 AERR -cos 8R cos iR -sin 8R cos iR sin il ID'_ub_"

!"AEP_ ' ' 0 I, ,
AMRR2 = -sin BR cos BR "'hub_ (41) ,

ANRR2 I.AERR -cos _ sin iN -sin 8_ si_ iR -cos iR _;GOV..
R

ALARFR, ALARRR LAERF,_ LAERF ,i; ,AERF'

= ' 4- M" (42)

AMARFR, AMARRR MAERF,R MAERF, R AERF, R

T ! L_f!

ANARFR, ANARRR NAERF,R- NAERF, R .AERF,R

Total rotor forces and moments,

[XAERFR,XAERRR 1 _,M_ARFR \LARRI_1
'IYAERFR,YAERRR_ and _ AMARFR,AMARRR t
kZAERFR, ZAERRR_ [ANARFR ,ANARRI_j

are passed to the AERO subroutine for summation with the fuselage quantities calcu-

lated therein; aerodynamic forces and moments (rotor + fuselage) are transferred to

SMART as inputs

FAY and II'AN p
LFAZJ LTANJ

Table I is a list of the ROTOR subroutine variables together with constants and
conversion factors. Included is each variable, its FORTRAN mnemonic, units, common

location, if applicable, and physical description. Table 2 is a list of the variables
transferred between ROTOR and other subroutines.

, Fuselage Aerodynamics

Tabular data from rotor-off wind-tunnel tests provides the basis for fuselage

aerodynamic forces and moments. These are represented in the helicopter body refer-
ence frame and are normalized by fuselage dynamic pressure. The data are obtained

from the function tables by linear interpolation on fuselage angle of attack and

sideslip angle (fips. 16-21).

13
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!,% To calculate fuselage angle of attack, rotor downwash velocity at the fuselage is ':

computed with an _mpirical expression, and is used to modify vertical velocity
(eq. (43))

(%_ - %F)_FRB %,
F

' = wB - (43)

WBPR wB 1 + DFR F i
Using tile vertical velocity at the fuselage, w_, fuselage angle of attack is calcu- _'
lated from equation (44). 41

_j

ALPHFS _FUS = arctan (44)\uB/

Fuselage sideslip angle is computed in equation (45), which is somewhat simplified

:" from the helicopter sideslip angle computed in SMART. '_,J

L

i BETAFS BFU S = arctan (45)

Fuselage dynamic pressure, used to normalize force and moment entries in the function

tables, is found using equation (46).

i p(u_ + 2 + w_2) (46)SQFS qFUS = _ VB

Q

From the function tables, the resulting forces and moments are: (D/q)FUS,

(Y/q)FUS, (L/q)FU S, (_/q)FUS' (M/q)FUS, (N/q)FUS" These quantities are then corrected
for differences in the equivalent "flat-plate area" between the actual helicopter and
the model used in the wind-tunnel tests from which the data were obtained. This

correction accounts for additional sources of drag (i.e., rotor hubs, rotor blades,
landing gear) that were not included in the wind-tunnel model.

Correction terms to be applied to the fuselage forces are calculated as shown in

equations (47)-(49), where Ale is the difference in flat-plate area; fuselage forces
are calculated in equations (50)-(52).

A(_IFus = Ale2(tan 2 1/2 (47)
[I + (tan _FUS) BFUS ) ]

A Y = Afe tan BFUS

FUS 2(tan )2 1/2 (48) .[i + (tan aFUS) BFUS ]

'_ Ale tan _FUSL_ =

2(tan 2 I_ (49)
\qJFUS [I + (tan aFUS) BFUS ) ]

[(o)XAERFS XFU S q FUS
= -qFUS + A\qlFUS J (50)

14
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YAERFS YFUS qFUS fi FUS

+ _I=_ (52) +
ZAERFS ZFUS =-qFUS _ FUS _q]= r

To make the corrections necessary for differences in c.g. position between the actual _[

" helicopter and the wind-tunnel model, this moment arm is computed as in equation (53). ,,,J

. SLCFS V ] _ I_X . g.

d c d
SDCFS = - 'Yc. g. / 1 (5 3)?US

SHCFS IAZ c /1
?US 'g"

is the baseline model e.g. offset (fig. 22), which I'

Idcxl has the constant numerical value of ft " Yc. is

the position (in inches) of the c.g. of the actual helicopter relative to its baseline

(fig. 4).
i

Using equation (54), fuselage moments are adjusted for this difference in c.g.
position,

ALARFS LFU S "(_/q IF1S 0 h d XFU _
CFUS cFU_

AMARFS MFU S = (:!/q)FUS qFUS + -hCFus 0 -£cFU S YFUS (54)

ANARFS NFU S (N/q)FU S -d _ 0 "
• cFU S cFU S _+FUS

If the helicopter is in rearward flight, the signs on XFU S, MFU S, and NFU S are
reversed to account for the aerodynamic differences at this flight condition.

• Total aerodynamic forces and moments include rotor and fuselage contributions,

which are summed at the end of the subroutine (eqs. (55) and (56)) and passed to
SMART.

FAX XFU; FkAER.. IAER
FAY YAERO I = YFU ; + ;_ R[ "-.

.AER F + ,.AERR[ (55)

' ZAERF :'AERRJFAZ ZAERO I ZFU ;]

15
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TALLAERO 1 LFUS _.ER F LAERR i!

TAM MAERO I = MFU S + I_ER_ + LAER_ (56) _i

I
TAN NAERO ] NFU S t.AER_ LAER." i

4_

Table 3 gives the definition of the variables, constants, and conversion factors d'
of the AERO subroutine. Table 4 lists input/output variables to and from other sub-

routines, together with required input data.

Engine and Governor

; Power is supplied to the rotor system by two Lycoming T-55-L7C turbine engines

mounted on the aft pylon. Although the representations are identical mathematically, 'i

i each engine is modeled separately. The block diagram in figure 23 illustrates =.,e

modeling method for the left engine, including the governor and forward rotor-shaft

dynamics. Nonlinear functions are shown in more detail in figures 24-30.

As shown in figure 23, trimming of the engine by zeroing _, is done while in

initial condition (I.C.) mode by setting flag ISTEADY after the rigid-body states have

been trimmed. Pilot inputs, shown on the left side of the diagram, include: positions

of the collective stick (_c is fed forward into the engine to compensate for rpm.... droop); N l lever (compressor speed); and beep trim switches (torque may be adjusted

i on engine individually, or engine torque rotor rpm may adjusted on
the left and be

both engines simultaneously). Changes in beep trimmer and collective positions modify

the fuel control actuator (N2) command. The fuel control mechanism is modeled as a

first-order system, with friction in the response represented by a deadband and by

hysteresis. Unlimited commanded power is calculated, as showal in figure 31, as the

difference between equivalent rotor rpm (NR) and the fuel control actuator position

(NR&). The term NR provides the intercept of the unlimited commanded power curve,
and_the slope of the_curve (M) is an empirically derived constant between engine fuel

flow and engine power. Feedback of NR(_ ) in the unlimited, commanded power calcula-

tion represents the governing loop of the engine, where engine power is modified to

I regulate variations in rotor rpm.
i

As sho_ in figures 23 and 31, the topping power level of the engine is a func-
tion of NR(_ ) and the compressor speed (Nl). Three positions, STOP, GROUND, and FLY

I_ are available on the N I lever; actuator motion between the positions is at a con-

stant rate of 0.8 in./sec. Unlimited commanded power is then topped as a function of

rotor rpm and compressor speed.

Gas generator dynamics are modeled as a Sirst-order lag with a tim,_ constant and

internal limiter, both of which are variable. The gas generator dynamics time con-

stal,t is a function of power output, modified as a function of power error. The

variable internal limiter adjusts for the engine, which powers down six times

:.. faster th_n it powers up, and is a function of power output.

The engine governor and rotor shaft dynamics, modeled as a third-order system

(fig. 23), regulate rotor rpm. Inputs to the governor and shaft dynamics model are

power available from each engine and power required for the accessories (hydraulic

systems, transmission losses, etc.). As shown in the figure, this system is driven by

the difference between resistive torque (damping plus spring torque) and rotor torque

16
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required. Rotor acceleration is the dlfference between shaft resistive torque and

engine torque available. Engine euLputs: ro_,r rnm (OMEGA), spring torque

QGOVRJ ,j'

and rotor rpm uncorrected for helicopter yaw rate

i,
OMEGPRJ

are passed to the ROTOR subroutine. I

Table 5 is a list of variables computed in the ENGINE subroutine, together with

constants and conversion factors, and table 6 has ENGINE subroutine input/output

variables, and logical flags.

i
'I

Mechanical Controls J

The purpose of the CONTROL subroutine is to represent the mechanical hardware

between the cockpit controls and the rotor swashplate. A block diagram of the sub-

routine logic is shown in figure 32. Mechanical control system inputs are lateral

cyclic (6Ap), collective (_Cp), longitudinal stick (6Bp), and directional (6Rp) cock-

pit control positions. The SAS and ECS actuator inputs from the respective subrou-

tines, and selected with the flags shown in the figure, augment the appropriate

cockpit control positions. Longitudinal cyclic position is also augmented by the

differential-collective-pitch-trim (DCPT) actuator which (although this capability

has been disconnected in the ARC helicopter) may be selected in the simulation model

by setting flag IDCPT. The purpose of the DCPT actuator is to artificially provide a

stable longitudinal stick position gradient with airspeed (fig. 33). To accomplish

this, as a function of airspeed, the DCPT actuator automatically introduces a positive

pitching moment (fig. 34), requiring the pilot to move the longitudinal stick forward

to maintain trim (ref. 13).

After control-stop limiting (downstream of cockpit control-position limiting,

which is not included in the diagram), control positions are converted from inches to

degrees of equivalent swashplate, resulting in OAF,R , @CF,R , @BF,R, and @RF,R.

First-stage control mixing (longitudinal and vertical, lateral and directional) is

followed by cumulative lateral stop limiting (of the authority of differential lateral

and combined lateral inputs). Results of (vertical and lateral) second-stage mixing,

@FSP' @FPP' @RSP' AND @RPP are limited at the swashplate prior to driving the swivel-
ing and pivoting upper-boost actuators. (In order that the swashplates move smoothly

and not bind up, each is driven by a combination of swiveling and pivoting motions.

Swashplate displacement is the sum of the two inputs.) The actuation dynamics are

• modeled as first-order lags, the outputs of which, @_F,R and A'ICF,R, may be inter-

preted to be collective and lateral cyclic pitch _ng]es represented in helicopter

body axes, respectively.

As described in reference 4, longitudinal cyclic pitch angle is scheduled with

equivalent airspeed (fig. 34); actuation dynamics are modeled as a first-order lag.

17
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Mechanlcal control-system outputs are rotor hub col]active and cyclic positions

fA1CFRC, AICRR_}

BICFRC, BICRRC _ ',

TIIOFRC, THORRC I

which are passed to the ROTOR subroutine. Table 7 is a summary of the variables used

in the CONTROL subroutine; table 8 gives subroutine input/output variables and logi-

cal flags. !
i

Stability Augmentation System

The basic augmentation of the CH-47B helicopter is modeled in the SAS subroutine.

Rate damping only is implemented in longitudinal and lateral axes (figs. 35 and 36);

the directional axis has turn coordination and N_{ stabilization in addition to rate
damping (fig. 37). Figures 38 and 39 show the directional SAS nonlinearities in
detail.

The longitudinal SAS consists of pitch-rate feedback through cascaded first-order

lag, lead-lag, and washout filters. The lateral SAS is comprised of a single first-

order lag applied to roll rate. In the N_ stabi]ization portion of the directional

SAS, sideslip angle is calculated using the pressure difference between the static

ports located on the nose of the aircraft. In an appendix to reference 4 it was

determined that this pressure difference may be represented as in equation (57)

APlstatic = (1.1)(4)sin(2y)sin(2_)q (57)
port

where _ = the angle between longitudi,la] axis and the static port line (52 °) and

= the dynamic pressure (= (I/2)_V2q)._ The portion of the yaw SAS rudder input cal-
q

culated to zero sideslip angle is given in equation (58) where KAP6R is a velocity-
dependent gain whose purpose is to wash out this rudder input at high speeds (fig. 38).

QK in. pedal_

= (kp in. H20) _ "in. H2Ol (58)
DRBYAW _RB _

P6 R /equiwdent

pedal

Directional SAS yaw damping uses simp]e filtering with, at Veq = 40 knots, a change
from a first-order lag in cascade with a lead-lag to a first-order lag in cascade with

a washout filter applied to yaw rate. Turn coordination is implemented with a fi:st-

order lag on helicopter roll rate. Computation of the SAS filtering outputs uses

subroutine FACT/UPDATE, designed to solve ordinary differential equations (ref. 14).

Augmentation in any or all of the three axes may be selected with switches

located in the CONTROL subroutine, Fl_,gs RSASQ, RSASP, and RSASR _elect the longi-

tudlnal, lateral, and directional SAS inputs, respectively.

SAS effectiveness may be demonstrated using dynamic response and stability-

derivative data. Figures 40-42 show SAS off and on responses for each of the longi-

tudinal, lateral, and directional axes in hover. Figures 43-45 and 46-48 give similar

results -_or Veq = 75 and 130 knots, respectively. More complete static and dynamici
i 18
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model data may be found in volume 11 of this report, which gives the validation

results. Included therein are static trim and stability derivative data as well as a

summary of dynamic check results.

Table 9 is a list of the SAS subroutine variables together with constants and

conversion factors. Included is each variable, its FORTRAN mnemonic, its units, its

common location if applicable, and its physical description. Table I0 is a list of :d
the variables transferred between SAS and other subroutines. I

4'

Electronic Control System I

Using the ECS of the CH-47B, a researcher may either implement an experimental

control system or, by designing explicit model-following laws, exercise the heli-

copter's variable-stability capability. The ECS subroutine is a model of this system;

subroutine inputs are the research pilot's cockpit control positions and the outputs

are ECS signals sent to the mechanical controls subroutine, CONTROL. No specific ECS

is documented in this report. It is anticipated that a particular ECS design will be

developed along with an individual experiment, and will be documented at that time.

However, during model validation, some simple procedures were developed which aid in

properly linking the ECS to the rest of the model. A discussion of these follows.

Prior to engaging the ECS (with flag IECSCON in subroutine CONTROL), the heli-

copter is tri_ned using the basic airframe and mechanical control system• In this

case, the SAS must be turned off before trimming, since SAS inputs alter the cockpit

control positions for trim.

When the ECS is engaged the helicopter is flown by the research pilot; therefore,

in the simulation the safety pilot's inputs to the mechanical control system are

disconnected as the ECS is turned on (see the CONTROL schematic, fig. 32). To avoid

destroying the trimmed condition of the helicopter when the safety pilot's controls

are disconnected, each trim cockpit control position is used as a bias which is added

to the appropriate ECS input (which is zero at trim, by definition); this is shown in

equations (59)-(62).

DLATTOT = DLATECS + DATOTIC (59)

DLONTOT = DLONECS + DBTOTIC (60)

DYAWTOT = DYAWECS + DRTOTIC (61)

DCOLTOT = DCOLECS + DCTr'rlC (62)

where

• "DATOTI_ _DLATP_

DBTOTIC = iDLONP _

DRTOTiC |!DYAWP ]

_DCTOT] (_ k_COLI'_ trim

Table 11 gives the ECS subroutine input/output variable definition

19
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Slung Load

Subroutine SLING models a baseline, externally suspended load in three degrees of

freedom. This is accomplished by introducing three new state variables, each defined

as a relative displacement of the load and helicopter body reference frames. Addi-

tionally, terms which represent the effect of the slung load motion on the helicopter

response are computed and passed to subroutine SMART. Simulation of the slung-load 'i

dynamics is optional and may be selected with flag ISLING. I
4"

Figure 49 (taken from ref. i) illustrates the geometry of the slung load, its _i

attachment, and position relative to the helicopter. The baseline load data, which I

are included in the simulation model, is a "MIL-VAN" weighing 7500 lb. It is sus- _i

pended ol. cables from tandem attachment points on the fuselage equally spaced about

the helicop, er c.g. It has been assumed that these attachment points may transmit no

moments between the load and the helicopter. Referring to the figure: _L, IL, and
_L are defined to be the longitudinal and lateral cable sway anglem ond the lateral
differential cable angle, respectively. 'i

To compute slung-load aerodynamic quantities, velocities in the helicopter body

reference frame at the slung-load c.g. are computed via equations (63)-(_5).

USL uSL = u B + (LL + RL)q B + LL_ L (63)

VSL Vse = v B - (ee + RL)P B - Leil (64)

WSL wSL = w B (65

Slung-load dynamic pressure, sideslip angle, and angle o_ attack, respectively.
are computed in equations (66)-(68).

I 2 _ + 2 I/2
SQSL qSL = _ P(uSL + vSL wSL) (66

arctan(VSL_ - _L (67)
BETSL 6SL = \"SL/

= arctanf"SL_ + (68)
ALFSL aSL \uSL ] @SL

Slung-load drag, sideforce, and yawing moment, respectively, are found from fig-

ures 50-52 as a functicn of load angle of attack and sideslip angle. These data,

normalized in the simulation model by load dynamic pressure, are taken from wind-

tunnel tests. Prior to their use in the cable angle calculations, the load aerody-

namic quantities arp ........_ _¢,_c _he hellcopter body reference frame, as in equa-
tions (69)-(7 I).

cos 'JL + sin v (69) "
XAERSL XAE_ = -qSL SL q- SL

2O
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t YAERSL YAERL qSl, SI, c°s VL - q

!' ANARSL NAERI = qSL (7])r, _ SL '

i Using and as inputs, suspension-cable angular accelerations
XAERL, "_mh _ NAERL

I
are computed with the nonlinear second-order differential] equations (72)-(74), from ,,

reference i.

AMULPD XAE_ _B LL+_ '\%_LmLL L LI LL

I rBv____BB •
_ rBiL + LL _ % .![_ (sin @ + sin IaL) - K_p (72)LL

t

I! where
_t

' [ 2 ]I/2_!il (mLg)2 + XAEP_

!' _ = mLg

_,

ALMLDD _L- mLLL + I--_L- LL PB- ---2 LL rBqB mLLL qB';LLL

rBu B
• -- - -_- (sin $ + sin K_,_L (73)

+ rB_*L + LL LL XL) -

NAER L mLgaL
COS COS --

ANULDD 5L - Jh _B 4JLL L @ SvL K66 L (74)

(During model validation, the value of K¢ was changed from the original value of
+1.8 to -0.03 to matcb BV dynamic-response data.)

Integratit,n results in cable angular velocities as in equations (75)-(77):

"_L = IUL dt (75)
AMULD

ALMLD _L = I_L at (76)

ANULD "['L = ;5I, dt (77)
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and cable positions as in equations (78)-(80):

AMUI. I_L= f_L dt (78) ','

ALML _L = F_L dt (79)• !

ANUL _L = f{_L dt
(80)

At a straight and level flight condition, values of _L, _L, and VL may be found

by solving equations (72), (73), and ('74) at steady state. Resulting trim values _re
given in equations (81)-(83).

=sin_ [sin +

ALMLIC _L_ = -# (82)
i.C.

ANULIC _ = 0 (83)
LI.C.

where I.C. represents the initial flight condition. By selecting flag ISLTRM,

initial values of the slung-load states are computed at the same time that _he heli-

copter is being trimmed.

In the original BV simulation model, the helicopter and slung load were modeled

together as a coupled nine degree-of-freedom system. However, since subroutine SMART

i was aesigned to handle only six degrees of freedom, the ARC model is somewhat modifiedfrom the original. Equations (84)-(89) are the nine degree-of-freedom helicopter

I! equations of motion in the helicopter body reference frame (ref. l), where the under-
lined terms are those which arise specifically from the slung load.

XAERO mL JL

6B = MH qBWB - g sin 0 + rBvB - MHH (qBWB - _g sin uL) LLMH rBPB (84)

YAERO mL JL mL

+B - MH + g sin ¢ cos O + PBWB - rBu B + MHH PBWB LLMH (rBqB + qB_L) - _ g sin %L

(85)

ZAERO mL(LL + RL)

WB - (_ + MH) + g cos ¢ cos O + qBUB - PBVB + (_, + MH) (q_ + p_)

MLL L

+ (_, + MH ) (PB_i,+ qB_e ) (86)
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I ( -yIxx) RLJL mLgRL KLp L (87)
. XZ (r_ - p_) + -Izz '"

"_ qB MAER-----_O+ "i---- ly rBPB 51yy rBPB Ilyy YY __/X____

I I_z) IZZ) i

= . _ + + rBqB[l_(lyy - 1 2 ]PB LAEROIzz + NAEROIxz + PBqBIxz(Ixx lyy _. - xz

+ /(rBqB + qBCL) + 4L----_Ixz cos _ cos @VL + h,g_,IzzX], (Ixxlz, -

i (8a)¢

r_ _B = _NAEROIxx + LAEROIxz + PBqB (12 - I I + 12xz) + - I -XX XX yy rBqB[Ixz(lyy xx l_z)]k

mLga_ cos 0 cos + xz 12
+ 4L----_--Ixx _VL LL (rBqB + qB_L ) + mLqRLIxz l] Ixx Izz - x:c)

(8_)

The underlined portions of the above equations are designated as the slung-load
contributions to the helicopter body reference frame accelerations and are given in
equations (90)- (95)•

-mL - JL

UBDS fl - (qBWB sin pL) (90)
Bs MH - KLg LLM H rBPB

-mL JL mL
VBDS " = --

VBs MH PBWB LLMH (rBqB + qBVL ) _ g sin IL (91)

WBDS " = '_(LL + _') mLLL

WBS (mL + MH) (qB + PB) + (mL + M_) (PBiL + qB_e ) (92)

-SJL mLgRL _

QBDS qBS - LLlyy rBP B +--f---yyKL_ L (93)

• .PBDS = (qBrB qBVL ) 4---LV xzpB S t\ LL + + mLga_ I co,_ , cos @vI

L}/ - ) (94)
+ mLgRLlzzk (IxxTzz 12xz

fmLga_ RLJLI
• FBDS r =] _7 1 cos @ cos _vL + xz (rBqB + qB_e )

BS % _ xx LL

+ mLgRLlxzl]_ /(Ixx Izz - 12)xz (95)
J/

These contributions are added directly to the helicopter body reference frame

acceleration calculations in SMART. By executing SMART immediate]y prior to SLINC,,

the states are calculated in the same order as in the origlna] BV mode_.
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I Table 12 gives the SLING subroutine variable definition; table 13 is a list of
subroutine input/output varlab]es and logical flags.

i

OPERATIONAL CONSIDERATIONS ,,
i

Rea]-tlme piloted simulation using a simulator cab and visual display requires

the constant input informatien described in table 14, I

Additionally, in order that a pilot may land the helicopter model, a simple gear _

model has been devised. The landing gear subroutine is nct actually executed; rather,

subroutine BLAND has been modified so that tile ground is contacted artificially (i.e.,

the gear reaction force is prescribed to be equal to the aircraft weight) and no

! reactive moments are calculated).

i

i. CONCLUSIONS 'I
i

I A mathematical simulation model of the ARC CH-_7B helicopter has been purchased

from the Boeing Vertol Company and implemented on the ARC Sigma IX computer.

Volume I of this report includes engineering explanations of each model subroutine;

also given are the appropriate assumptions and simplifications necessary to ensure

the validity of a particular experiment.

Volume II of this report gives a comparison among ARC and BV model dynamic

response data and flight test data, together with ARC static-trim and stability-

derivative data. Successful validation of the ARC model has been completed against

BV model data. As with all mathematical models of physical systems, however, this

model is not a perfect replication of the CH-47B helicopter. This is particularly

true with a quasi-steady rotor dynamics mc_el, the type implemented herein. To repre-

sent specific aspects of the helicopter response more closely and to meet the needs

of a particular simulation experiment, it may be desirable to modify the model
described in this report.
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i,
_ APPENDIX A: FLAPPING AND CONING EQUATIONS ,

Using Wheatley-Bailey theory (refs. 6 and 7), flapping and coning angles are .,

computed in the shaft-normal-plane-wind reference frame. Due to pitch-flap (-oupling '

(63), the solution for coning and flapping angles (a0,al,bl) is coup]ed with the

definition of swashplate cyclic and collective pitch ang]es (Alc,Blc,O0) , as shown in _j
equations (AI)-(A7). Additionally, coning ang]e is a function of r6tor thrust, I
defined in equation (AI). q,

" AORRAOFR /'0aCRB /L" (2CI" 0° @tw _2_°_I_ 2/'-' _ ,I"ao

= - - (A2) ii
AIRR al i - (_2/2) + _-- + 2 (paCRB_!)/IF,R i

BIFR 4pa0 16PF,R[I - (_2/2)]

B2RR bl = + A1 c - (A3)

311 + (U2/2)] (pacR_)/IF, R"

where

AICFR

AICRR A1c = A_c 2 + KBal (A4)

BICFR

BICRR BIc = B{c 2 + K_bl (A5)

THOFR

THORR @o = @_ + KBao (A6)

CTRRI -_o = 2 + -3- + _ + _Lk2- + -_-) - <A7)

The purpose of this appendix is to provide the algebraic steps necessary to

aecouple these equations, eventually resulting in the mode] equation (18). F, IIo_TIn_,

is the step by step decoupling of the equations, reproduced from reference 4.

1. Substituting for (2CT/ao) in the a 0 equation:

_12___F,R )( {pacR_ 1 O0 0tw Ff)0 _)B:,]} 00 Otw T_2;0)So = _ +-_ + -_-+ U[U_ + - +'_ + 5 (A8)

/psc_ \/ 400 00 @tw 2 j_o_

a° = _I_F_R)VI +-3--+ @tw + 2_200 + _20tw - 2_,B]c +-6- +--- -_5 2-) (A9)

4
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2. Substitutln_ for Oo and Bzc:

a = - (A::)
C'--_-_ o (0' + " + 2p :c + KBb : + 2: + + p;pacRB/ 0 Kgao) 2 _2 ' 2

[[I2IF'R (_ + 3 )] (2_,K f_) "

aOl....-$ K_ 7._ + a:(O.0)+ b: i4'
:_acRB

I

A B C _i

0 6= :)_ + : p: - 2_B_ + 2>,+ + _ (AI2)•c2 tw

J

3. After defining coefficient-_",qs indicated above, the equation has the form:

Aa 0 + Ba I + Cb: = J (A13)

4. Rearranging the aI equation:

tw :c Blc 16qF,R[I + (_2/2)][(I/4) - (P2/8)]

a: = T + --_ + 2 8 4 (_acR'_3!)/IF,Rn

(A14)

5. Substituting for L'o al:dB:,::

al = (r'_0+ Ki3a0)-_- - ' + KBb +

_Otw ]6qF,R[I + (D2/2)][(I/4) - (U2/8)]
.... (AID)

+ + 2 (pacR_2)/IF, R

ao _ + a: . 8 _ ---

D E

2PO'0 (I 3 2) p>, _Otw ]6qF R[I + (_212)][(i/4) - (_218)1
.... (AI6)

:3 B:c 2 : "+"--'_-- + 7- + 2 (_?acR_f_)/I.F,R

K
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6. The definition of the above coefficients results in the form of equa-
tion (A|7):

Da0 + Ea I + Fb I = K (AI7) I,

7. Substituting for A1c in the b I equation:
J

lj

4_a0 16p F [1 - (_2/2)] ]

bl = + A' + KBal ,R- (AIS)

311 + (H2/2)] ic2 (pacR_)/iF, R I
i

-4_ 16PF,R[I _ (_2/2)] lj
a0 + al(-K B) + bl(l O) = A' - (A19)

311 + (_2/2)] " ic2 (pacR_)/IF, R

H I L 'i
i

8. After the above definitions, the equation has the form:

Ga 0 + Ha I + Ib I = L (A20)

As discussed in the text, equations (A13), (A17), and (A20), which are the same as the

text matrix equation (18), are solved for a 0, a I, and b I.
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APPENDIX B: INFLOW DYNAMICS SOLUTION

In the original version of the model (developed by Boeing Vertol Company) from q

which this model was adapted, the inflow ratio was modeled by the equation (BI)

expression, including a flrst-order lag (ref. I). Past cycle values of CTF,R, )`F,R,

and _F,R were used, so no iteration on the current value of _F,R was performed i
using this implementation, q,

. , F,R FRF (FR) TR,F 1

i ALAMFR AF : R)I/2 + (BI)i ALAMRR ,R )`F,R - (_,R + )2F, 2(_R,F2 + )`R,F)2 1/ '%F,RS + _,

where

WF,R _ WF,R

XF'R = RBF (_F,R - rF,R) RBF,RfiF,R,R

as defined in model equation (12).

A more exact real-time solution was obtained Oy Boris Voh, who represented the

above as a differentia] equation and solved it using a local linearization method

implemented as subroutine LOLIN (ref. 12). Following is the solution method, using
the forward rotor equation as an example:

[ ][]DFRFCTR I (B2)

WF CTF + )`Fs I

_2 2 i/2 + (B3)'F ( F + )`F) 2(>R

wF CTF DFRFCTR
Z)`F WF + - (B4)

T)F̀_F + _F- RBF_F RBF_F 2(_12F+ )`_)i/2 2(_ + )`_)I/2

. DFRFCTR

WF WF CTF ]

i,F = 1 "F RBFI2F + 2(_F + X_)l/2 + . 77 (B5)RBFP'F T)F̀ 2_ R * AR) J

Following are the definitions necessary for the application of LOLIN to this problem:

2_



ORIC'. _ '!

OF.Pu._,,.._ ...... _ .,(

LOLIN Fngineering
Description definition definition

n

ql

Nonlinear function FN

Partial derivative of nonlinear FT '_1"
function with respect to time _'

"_iF _iv

Jacobian of system FS

?iR _i_,,
?_F ?kR

Be
System state vector SI ,

[:'ii_.

where

"'l<J

is defined above in equation (B5), the time derivative of the function,

and the four elements of the Jacobian may be calculated as in equations (B6)-(B9):

?iF I ] + i/2 - 2,3/:: (B6)

DF]
_)XF 1 FTR(_DFRF/_)_R) a°DFRF d"J_L R _]

where

(I Isin BFU S )AdeN F?DFRF

_---R--= &I-(lR/UR)-O.mD]p R
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_C /_F a(_DFF R D_FRCTF_F 1

:°_ _IR I TF 3DFFR

2 8()J_ + %F) 2(_F ^F) j "

where

3DFFR _ [I - Isin _FUS I]Ad_FR ,.]

3%F AI-(%FIIJR)- 0"251i Feb

3iR = i Ii + aR°R _ CTRtR .]

Using LOLIN, equations (BI) may be solved with a Newton-Raphson numerical techniquein equations (BIO) and BII),

3_,F . 3._R [

n+l n "8iF Di; In (BIO)

_lF 31R

det

D1F 3.\ R

ALAMRR %R = %R +

n+l n 'JiF D_F" In (Ell)

3t F S_R
det

[)IF 3_ R

o)_. ,.;,...L P:':-:.<
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i
TABLE 2.- ROTOR SUBROUTINE VARIABLE DEFINITION.

Input variables Output variables

Common Subroutine Common Subroutine of

Variable location of origin Variable location destination

AICFRC CH(39) CONTROL ALARFR CH(52) AERO iI

ALCRRCCH 38) I CH(53) I

BICFRC CH(37) AMARFR CH(54) 4,

BICRRC CH(36) AMARRR CH(55) 7

HCG A(176) SMART ANARFR CH(56)

OMEGPF CH(II5) ENGINE ANARRR CH(57)

OMEGPR CH(II6) ENGINE QAERFR CH(64) ENGINE

PB A(37) S_IART QAERRR CH(65) ENGINE

QB A(38) SMART TMGN01 CH(100) AERO

QGOVFR CH(257) ENGINE TMGN05 CH(I04)

QGOVRR CH(258) ENGINE TMGN06 CH(105) 'i
RB A (39) SMART XAERFR CH (72)

SBETFS CH(50) AERO XAERRR CH(75)

THOFRC CH(42) CONTROL YAERFR CH(73)

THORRC CH(43) CONTROL Y,_ERRR CH(76)

UB A(58) SMART ZAERFR CH(74)

VB A(59) SMART ZAERIRR CH(77)

WB A(60) SMART

Logical flags Required input data

Common Description
Common Function Variable locationFlag location

NGREFF ICH(7) Ground effect correction DXCG CH(68) Position of actual

of thrust off/on (0/i) DYCG CH(69) helicopter c.g.

NSTALL ICH(5) Rotor stall modificati:,n DZCG CH(70) relative to its

of thrust and torque reference (fig. 30)
off/on (0/i)

NTRQCR ICH(6) Empirical correction [
of rotor torque Ioff/on (0/])

,I
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i TABLE 4.- AERO SUBROUTINE TRANSFER VARIABLES, INPUT DATA AND

i LOGICAL FLAGS

I
It_ut variables Output variables _,

Common Subroutine Common Subroutine of
Variable Variable

location of origin location destination

ALARFR SH(52) ROTOR BETAFS CH(59) SAS

ALARRR SH(53) FAX A(136) SMARTi

AMARFR SH(54) FAY A(137)

AMARRR CH(55) FAZ A(138)

ANARFR CH(56) I TAL A(155)ANARRR CH(57) _' TAM A(156) _r _'

TEMA gH(92) I S_IART TAN A(157)

TMGNOI CH(100) ROTOR

TMGNO5 SH(104) ROTOR

UB A(58) SMART
VB A(59) SMART

WB A(60) SMART

XAERFR CH(72) ROTOR

XAERRR CH(75) '

YAERFR CH(73)

YAERRR 8H(76)

ZAERFR CH(74) ,

ZAERRR CH(77) _r

Required Input Data

Common

Variable location Description

DXCG CH(68) Position of actual

DYCG CH(69) helicopter c.g. relative

DZCG CH(70) to its reference (fig. 30).
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TABLE 6.- ENGINE SUBROUTINE TRANSFER VARIABLES.

Input variables Output variables I

Variable Common Subroutine Common Subroutine of _'
location of origin Variable !p_a _on _dj2t_na fO_ - _'1

DCOLTOT CH(210) CONTROL OMEGPF CH(II5) ROTOR
OMEGPR CH(II6) ROTOR _'

IBEEPI Simulator cab

IBEEPI2 Simulator cab QGOVFR CH(257) ROTOR

QAERFR QGOVRR CH(258) ROTORCH(64) ROTOR 'i

QAERRR ICH(65) ROTOR ,i

Logical flags

Common
Flag location Function

ISTEADY ICH(4) Zeros _ after rigid bod
states have been trimmed

off/on (0/i)
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TABLE 8.- CONTROL SUBROUTINE TRANSFER VARIABLES

Input variables Output variables ]

Common Subroutine of Common Subroutine of
Variable Variable

location origin location destination L

DCOLECS CH(275) ECS AICFRC CH(39) ROTOR

DCOLP CH(206) Simulator cab AICRRC CH(38) ROTOR

DLATECS CH(272) ECS BICFRC CH(37) ROTOR

DLATP CH(203) Simulator cab BICRRC CH(36) ROTOR

DLATSAS CH(17) SAS THOFRC CH(42) ROTOR

DLONECS CH(273) ECS THORRC CH(43) ROTOR
DLONP CH(204) Simulator cab

DLONSAS CH(18) SAS
DYAWECS CH(274) ECS

DYAWP CH(205) Simulator cab

DYAWSA_ CH(19) SAS

1AND IA(29) Simulator cab
IANU IA(30) Simulator cab

ILWD IA(33) Simulator _-_ab

IRWD IA(34) Simulator c_b

VEQ A(75) SMART

Logical flags t

Common

Flag location Function

IDCPT ICH(3) Differential collective pitch
trim off/on (0/i)

IECSCON ICH(2) Electronic control system off/on (0/i)

IMHIS --- Simulator cab off/on (0/i)

RSASP CH(282) Lateral SAS off/on (O/i)

RSASQ CH(283) Longitudinal SAS off/on (0/i)
RSASR CH(284) Directional SAS off/on (0/I)
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f TABLE lO.- SAS SUBROUTINE TRANSFER VARIABLES
b i
! Input variables Output variables

Common Subroutine Common Subroutine of '1Variable Variable
: location of origin location destination 4,

BETAFS CH(59) AERO DLATSAS CH(17) CONTROL _

I SQFS CH(IlO) AERO DLONSAS CH(I8) CONTROL
PB A(37) SMART DYAWSAS CH(19) CONTROL

QB A(38)
RB A(39)

VEQ A(75)

QBAR A(178)

i

I

TABLE II.- ECS SUBROUTINE TRANSFER VARIABLES.
r

Input variables , Output variables

Common Subroutine of t Common TSubroutine of
i Variable location I destination,.,Variable location origin i ,....

DCOLP CH(206) Simulator cab l DCOLECS CH(275) CONTROL

DLATP CH(203) Simulator cab lDLATECS CH(272) CONTROL

DLONP CH(204) Simulator cab IDLONECS CH(273) CONTROL

DYAWP CH(205) Simulator cab IDYAWECS CH(274) CONTROL
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"FABLE 13.- SLING SUBROUTINE TRANSFER VARIABLES, INPUT DATA AND
LOGICAL _ ^r,e

[

Input variables t Output variables

Con_non Subroutine [ Common Subroutine of J

Varlablc Location of oriKi/!_ I Variable locat_on destination I
CPHI A([i) SMART r]TBDS CH( 251 ) SMART "

CTHT A(13) QBDS CH(252) _'
PB A(37) RBDS CH(253)

PBD A(55) UBDS CH(248)

PHIR A(4) VBDS CH(249)
QB A(38) WBDS CH(250)

QBD A(56)

RB A(39)

RBD A(57)
RHO2 ¢,H(IOI)

SPHI A(lO)
STHT A(12)

UB A(58)
UBD A(413)

VB A(59)

VBD A(414)

WB A(60)

XlXX A(II6)
XIXZ A(II9)

XIYY A(II7)
XIZZ A(II8) i

XMASS A(130)

!

Required Input Data ]

]Common Desc rip tionVariable location

BJSL CH(266) Moment of inertia of slung load about '
load verti,'a] axis

BLSL CH(267) Average cable length below attachment

point
BRSL CH(268) Vertical distance between hook attach-

ment point and aircraft c.g.

SASL CH(297) Cable separation distance

SMSLIC Slung load mass
THESL CH(269) Angle between load x-axis and heli-

copter x-axis

WGHTSL ,Slunz_l_q__ad'weight _, ,

Logical Flags

_Flag [Cormnon location Function

ISLING I ICH(1) Slung load subroutine option off/on (0/i)ISLTRM ICH(8) Slung load trim in straight level flight off/on

I (Oil)
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[ TABLE 14.- REQUIRED INPUT DATA FOR OPEItATIONAI. S[MUI,AT|ONS

Comnlon Units Physical description IVariable location

DXCG CH(68) in. Position of actual helicopter ¢
DYCG CH(69) in. c.g. relative to its refer-

_ DZCG CH(70) in. ence (fig. 30)

WAITIC A(242) Ibf Helicopter weight

XIXXIC A(243) slug-ft 2 Helicopter moments and prod-

XIYYIC A(244) slug-ft 2 uct of inertia

XIZZIC A(245) slug-ft 2

i XIXZIC A(246) slug.-ft2

i XP A(171) ft Position of pilot, in heli-

YP A(172) £t copter body axes, relative

• ZP A(173) ft to c.g. of aircraft

!
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Figure 2.- Rotor signal flow dLagram.
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Figure 5.- Reference frame transformation through shaft incidence angles.
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Figure 6.- Reference frame transformation through rotor sideslip angles.
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WHERE ACQF,R IS COMPUTED AS FOLLOWS:

IF ,u_<0.1: ACQF ' R = 0.000833 (0.088 PF, R) + 0.01753 - 0.0062)- (C'FF,R

IF0.1 <p_<0.2: ACQF ' R = 0.0002 (,U.F,R 0.1)-0.00001 +0.01753 -0.0062)- (CTF, R

IF 0.2 <,u _<0.3: ACQF ' R = 0.00042 (/_F, R - 0.2) + 0.000006 + 0.01753 (CTF ' R - 0.0062)

IF p > 0.3: ACQF ' R = 0.0016 (,UF,R - 0.3) + 0.000048 + 0.01753 (CTF ' R - 0.0062)

I F ACQF ' R < - 0.00001 : = - 0 000""_CQF, R

Figure 12.- Empirical correction of rotor torque coefficient
(in-line calculation).
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Figure 13.- Rotor-on--rotor interference terms: d'_ "forward flight) andF

and d_R F (rearward flight) FR
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Figure 35.- Longitudinal stability augmentation system.
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Figure 36.- Lateral stability augmentation system.
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Figure 44.- Lateral axis dynamic response SAS OFF and ON;

Veq = 75 knots, weight = 33,000 Ib, nominal c.g. position•
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Figure 48.- Directional axis dynamic response SAS OFF and ON;
V = 130 knots, weight = 33,000 ]b, nominal c.g. position.
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