904 research outputs found

    Lattice dynamics and the electron-phonon interaction in Ca2_2RuO4_4

    Full text link
    We present a Raman scattering study of Ca2_2RuO4_4, in which we investigate the temperature-dependence of the lattice dynamics and the electron-phonon interaction below the metal-insulator transition temperature ({\it T}MI_{\rm MI}). Raman spectra obtained in a backscattering geometry with light polarized in the ab-plane reveal 9 B1g_{1g} phonon modes (140, 215, 265, 269, 292, 388, 459, 534, and 683 cm−1^{-1}) and 9 Ag_g phonon modes (126, 192, 204, 251, 304, 322, 356, 395, and 607 cm−1^{-1}) for the orthorhombic crystal structure (Pbca−-D2h15_{2h}^{15}). With increasing temperature toward {\it T}MI_{\rm MI}, the observed phonon modes shift to lower energies and exhibit reduced spectral weights, reflecting structural changes associated with the elongation of the RuO6_6 octahedra. Interestingly, the phonons exhibit significant increases in linewidths and asymmetries for {\it T} >> {\it T}N_{\rm N}. These results indicate that there is an increase in the effective number of electrons and the electron-phonon interaction strengths as the temperature is raised through {\it T}N_{\rm N}, suggesting the presence of orbital fluctuations in the temperature regime {\it T}N_{\rm N} << {\it T} << {\it T}MI_{\rm MI}.Comment: 6 pages, 4 figure

    Renormalization Group Analysis of \rho-Meson Properties at Finite Density

    Get PDF
    We calculate the density dependence of the ρ\rho-meson mass and coupling constant(gρNNg_{\rho NN}) for ρ\rho-nucleon-nucleon vertex at one loop using the lagrangian where the ρ\rho-meson is included as a dynamical gauge boson of a hidden local symmetry. From the condition that thermodynamic potential should not depend on the arbitrary energy scale, renormalization scale, one can construct a renormalization group equation for the thermodynamic potential and argue that the various renormalization group coefficients are functions of the density or temperature. We calculate the ÎČ\beta-function for ρ\rho-nucleon-nucleon coupling constant (gρNNg_{\rho NN}) and Îł\gamma-function for ρ\rho-meson mass (Îłmρ\gamma_{m_\rho}). We found that the ρ\rho-meson mass and the coupling constant for gρNNg_{\rho NN} drop as density increases in the low energy limit.Comment: 24 pages, 10 figures, revised versio

    Exploring the X-ray emission properties of the supernova remnant G67.7+1.8 and its central X-ray sources

    Full text link
    We have studied the supernova remnant G67.7+1.8 with the Chandra X-ray observatory. The remnant's X-ray morphology correlates well with the double-arc structure seen at radio wavelength. The X-ray spectra of the northern and southern rim of G67.7+1.8 exhibit emission line features of highly ionized metals, which suggests that most of the observed X-rays originate in a thermal plasma. We find magnesium, silicon, and sulphur are overabundant relative to the solar values. Gaussian emission lines at ∌4\sim4 keV and ∌7\sim7 keV are detected. The ∌4\sim4 keV line is consistent with K-emission lines from 44^{44}Ca and/or 44^{44}Sc whereas the ∌7\sim7 keV line feature may arise from unresolved Fe-K lines. Chandra's sub-arcsecond angular resolution allowed us to detect four faint point sources located within ∌1.5\sim1.5 arc-minutes of the geometrical remnant center. Among these objects, CXOU195424.75+312824.9 and CXOU195429.82+312834.1 do not have optical counterparts, leaving them as candidates for a possible compact stellar remnant.Comment: Accepted by A&A, 10 pages, 6 figures, 3 table

    Exchange Current Corrections to Neutrino--Nucleus Scattering

    Get PDF
    Relativistic exchange current corrections to neutrino--nucleus cross sections are presented assuming non--vanishing strange quark form factors for the constituent nucleons. For charged current processes the exchange current corrections can lower the impulse approximation results by 10\% while these corrections are found to be sensitive to both the nuclear density and the strange quark axial form factor of the nucleon for neutral current processes. Implications on the LSND experiment to determine this form factor are discussed.Comment: 11 pages, 2 figures, revtex 3.0, full postscript version of the file and figures available at http://www.nikhefk.nikhef.nl/projects/Theory/preprints/preprints.html To appear in Phys. Rev. Lett

    Hyperons analogous to the \Lambda(1405)

    Full text link
    The low mass of the Λ(1405)\Lambda(1405) hyperon with jP=1/2−j^P = 1/2^-, which is higher than the ground state Λ(1116)\Lambda(1116) mass by 290 MeV, is difficult to understand in quark models. We analyze the hyperon spectrum in the bound state approach of the Skyrme model that successfully describes both the Λ(1116)\Lambda(1116) and the Λ(1405)\Lambda(1405). This model predicts that several hyperon resonances of the same spin but with opposite parity form parity doublets that have a mass difference of around 300 MeV, which is indeed realized in the observed hyperon spectrum. Furthermore, the existence of the Ξ(1620)\Xi(1620) and the Ξ(1690)\Xi(1690) of jP=1/2−j^P=1/2^- is predicted by this model. Comments on the Ω\Omega baryons and heavy quark baryons are made as well.Comment: 4 pages, talk presented at the Fifth Asia-Pacific Conference on Few-Body Problems in Physics 2011 (APFB2011), Aug. 22-26, 2011, Seoul, Kore

    Molecular and Ionic shocks in the Supernova Remnant 3C391

    Get PDF
    New observations of the supernova remnant 3C391 are in the H2 2.12 micron and [Fe II] 1.64 micron narrow-band filters at the Palomar 200-inch telescope, and in the 5-15 micron CVF on ISOCAM. Shocked H2 emission was detected from the region 3C391:BML, where broad millimeter CO and CS lines had previously been detected. A new H2 clump was confirmed to have broad CO emission, demonstrating that the near-infrared H2 images can trace previously undetected molecular shocks. The [Fe II] emission has a significantly different distribution, being brightest in the bright radio bar, at the interface between the supernova remnant and the giant molecular cloud, and following filaments in the radio shell. The near-infrared [Fe II] and the mid-infrared 12-18 micron filter images are the first images to reveal the radiative shell of 3C391. The mid-infrared spectrum is dominated by bright ionic lines and H2 S(2) through S(7). There are no aromatic hydrocarbons associated with the shocks, nor is their any mid-infrared continuum, suggesting that macromolecules and very small grains are destroyed. Comparing 3C391 to the better-studied IC443, both remnants have molecular- and ionic-dominated regions; for 3C391, the ionic-dominated region is the interface into the giant molecular cloud, showing that the main bodies of giant molecular clouds contain significant regions with densities 100 to 1000/cm^3 and a small filling factor with higher-density. The molecular shocked region resolves into 16 clumps of H2 emission, with some fainter diffuse emission but with no associated near-infrared continuum sources. One of the clumps is coincident with a previously-detected OH 1720 MHz maser. These clumps are interpreted as a cluster of pre-stellar, dense molecular cores that are presently being shocked by the supernova blast wave

    Infrared Spectroscopy of Molecular Supernova Remnants

    Get PDF
    We present Infrared Space Observatory spectroscopy of sites in the supernova remnants W28, W44, and 3C391, where blast waves are impacting molecular clouds. Atomic fine-structure lines were detected from C, N, O, Si, P, and Fe. The S(3) and S(9) lines of H2 were detected for all three remnants. The observations require both shocks into gas with moderate (~ 100 /cm3) and high (~10,000 /cm3) pre-shock densities, with the moderate density shocks producing the ionic lines and the high density shock producing the molecular lines. No single shock model can account for all of the observed lines, even at the order of magnitude level. We find that the principal coolants of radiative supernova shocks in moderate-density gas are the far-infrared continuum from dust grains surviving the shock, followed by collisionally-excited [O I] 63.2 and [Si II] 34.8 micron lines. The principal coolant of the high-density shocks is collisionally-excited H2 rotational and ro-vibrational line emission. We systematically examine the ground-state fine structure of all cosmically abundant elements, to explain the presence or lack of all atomic fine lines in our spectra in terms of the atomic structure, interstellar abundances, and a moderate-density, partially-ionized plasma. The [P II] line at 60.6 microns is the first known astronomical detection. There is one bright unidentified line in our spectra, at 74.26 microns. The presence of bright [Si II] and [Fe II] lines requires partial destruction of the dust. The required gas-phase abundance of Fe suggests 15-30% of the Fe-bearing grains were destroyed. The infrared continuum brightness requires ~1 Msun of dust survives the shock, suggesting about 1/3 of the dust mass was destroyed, in agreement with the depletion estimate and with theoretical models for dust destruction.Comment: 40 pages; 10 figures; accepted by ApJ July 11, 200

    Complete 0 hbar omega calculations of Gamow-Teller strengths for nuclei in the iron region

    Get PDF
    Gamow-Teller strengths for selected nuclei in the iron region (A~56) have been investigated via shell-model Monte Carlo calculations with realistic interactions in the complete fp basis. Results for all cases show significant quenching relative to single-particle estimates, in quantitative agreement with (n,p) data. The J=1,T=0 residual interaction and the f_{7/2}-f_{5/2} spin-orbit splitting are shown to play major roles in the quenching mechanism. Calculated B(E2, 2^+_1 -> 0^+_1) values are in fair agreement with experiment using effective charges of e_p=1.1e and e_n=0.1e.Comment: 13 pages + 1 postscript file, Caltech preprint MAP-16

    Dynamics of Baryons from String Theory and Vector Dominance

    Get PDF
    We consider a holographic model of QCD from string theory, a la Sakai and Sugimoto, and study baryons. In this model, mesons are collectively realized as a five-dimensional \U(NF)=U(1)×SU(NF)U(N_F)=U(1)\times SU(N_F) Yang-Mills field and baryons are classically identified as SU(NF)SU(N_F) solitons with a unit Pontryagin number and NcN_c electric charges. The soliton is shown to be very small in the large 't Hooft coupling limit, allowing us to introduce an effective field B{\cal B}. Its coupling to the mesons are dictated by the soliton structure, and consists of a direct magnetic coupling to the SU(NF)SU(N_F) field strength as well as a minimal coupling to the U(NF)U(N_F) gauge field. Upon the dimensional reduction, this effective action reproduces all interaction terms between nucleons and an infinite tower of mesons in a manner consistent with the large NcN_c expansion. We further find that all electromagnetic interactions, as inferred from the same effective action via a holographic prescription, are mediated by an infinite tower of vector mesons, rendering the baryon electromagnetic form factors completely vector-dominated as well. We estimate nucleon-meson couplings and also the anomalous magnetic moments, which compare well with nature.Comment: 65pages, 3 figures, vector mesons and axial-vector mesons are now canonically normalized (comparisons with data and conclusions unaffected

    Generalization of the Bound State Model

    Get PDF
    In the bound state approach the heavy baryons are constructed by binding, with any orbital angular momentum, the heavy meson multiplet to the nucleon considered as a soliton in an effective meson theory. We point out that this picture misses an entire family of states, labeled by a different angular momentum quantum number, which are expected to exist according to the geometry of the three-body constituent quark model (for N_C=3). To solve this problem we propose that the bound state model be generalized to include orbitally excited heavy mesons bound to the nucleon. In this approach the missing angular momentum is ``locked-up'' in the excited heavy mesons. In the simplest dynamical realization of the picture we give conditions on a set of coupling constants for the binding of the missing heavy baryons of arbitrary spin. The simplifications made include working in the large M limit, neglecting nucleon recoil corrections, neglecting mass differences among different heavy spin multiplets and also neglecting the effects of light vector mesons.Comment: 35 pages (ReVTeX), 2 PostScript Figure
    • 

    corecore