1,445 research outputs found

    Reconnection in pulsar winds

    Get PDF
    The spin-down power of a pulsar is thought to be carried away in an MHD wind in which, at least close to the star, the energy transport is dominated by Poynting flux. The pulsar drives a low-frequency wave in this wind, consisting of stripes of toroidal magnetic field of alternating polarity, propagating in a region around the equatorial plane. The current implied by this configuration falls off more slowly with radius than the number of charged particles available to carry it, so that the MHD picture must, at some point, fail. Recently, magnetic reconnection in such a structure has been shown to accelerate the wind significantly. This reduces the magnetic field in the comoving frame and, consequently, the required current, enabling the solution to extend to much larger radius. This scenario is discussed and, for the Crab Nebula, the range of validity of the MHD solution is compared with the radius at which the flow appears to terminate. For sufficiently high particle densities, it is shown that a low frequency entropy wave can propagate out to the termination point. In this case, the "termination shock" itself must be responsible for dissipating the wave.Comment: LaTeX 13 pages, 3 figures, typos remove

    Linearly polarized X-ray flares following short gamma-ray bursts

    Full text link
    Soft X-ray flares were detected to follow the short-duration gamma-ray burst GRB 050724. The temporal properties of the flares suggest that they are likely due to the late time activity of the central engine. We argue that if short GRBs are generated through compact star mergers, as is supported by the recent observations, the jet powering the late X-ray flares must be launched via magnetic processes rather than via neutrino-antineutrino annihilations. As a result, the X-ray flares following short GRBs are expected to be linearly polarized. The argument may also apply to the X-ray flares following long GRBs. Future observations with the upcoming X-ray polarimeters will test this prediction.Comment: 4 pages (no figure), accepted for publication in ApJL, typos correcte

    Environment and Energy Injection Effects in GRB Afterglows

    Get PDF
    In a recent paper (Dai & Lu 1999), we have proposed a simple model in which the steepening in the light curve of the R-band afterglow of the gamma-ray burst (GRB) 990123 is caused by the adiabatic shock which has evolved from an ultrarelativistic phase to a nonrelativistic phase in a dense medium. We find that such a model is quite consistent with observations if the medium density is about 3×106cm33\times 10^6 {\rm cm}^{-3}. Here we discuss this model in more details. In particular, we investigate the effects of synchrotron self absorption and energy injection. A shock in a dense medium becomes nonrelativistic rapidly after a short relativistic phase. The afterglow from the shock at the nonrelativistic stage decays more rapidly than at the relativistic stage. Since some models for GRB energy sources predict that a strongly magnetic millisecond pulsar may be born during the formation of GRB, we discuss the effect of such a pulsar on the evolution of the nonrelativistic shock through magnetic dipole radiation. We find that after the energy which the shock obtains from the pulsar is much more than the initial energy of the shock, the afterglow decay will flatten significantly. When the pulsar energy input effect disappears, the decay will steepen again. These features are in excellent agreement with the afterglows of GRB 980519, GRB 990510 and GRB 980326. Furthermore, our model fits very well all the observational data of GRB 980519 including the last two detections.Comment: 21 pages, LaTeX, accepted for publication in ApJ, one paragraph adde

    Gamma-Ray Burst Afterglows with Energy Injection: Homogeneous Versus Wind External Media

    Get PDF
    Assuming an adiabatic evolution of a gamma-ray burst (GRB) fireball interacting with an external medium, we calculate the hydrodynamics of the fireball with energy injection from a strongly magnetic millisecond pulsar through magnetic dipole radiation, and obtain the light curve of the optical afterglow from the fireball by synchrotron radiation. Results are given both for a homogeneous external medium and for a wind ejected by GRB progenitor. Our calculations are also available in both ultra-relativistic and non-relativistic phases. Furthermore, the observed R-band light curve of GRB{000301C} can be well fitted in our model, which might provide a probe of the properties of GRB progenitors.Comment: revised version for publication in Chin. Phys. Let

    Magnetic Vortex Resonance in Patterned Ferromagnetic Dots

    Full text link
    We report a high-resolution experimental detection of the resonant behavior of magnetic vortices confined in small disk-shaped ferromagnetic dots. The samples are magnetically soft Fe-Ni disks of diameter 1.1 and 2.2 um, and thickness 20 and 40 nm patterned via electron beam lithography onto microwave co-planar waveguides. The vortex excitation spectra were probed by a vector network analyzer operating in reflection mode, which records the derivative of the real and the imaginary impedance as a function of frequency. The spectra show well-defined resonance peaks in magnetic fields smaller than the characteristic vortex annihilation field. Resonances at 162 and 272 MHz were detected for 2.2 and 1.1 um disks with thickness 40 nm, respectively. A resonance peak at 83 MHz was detected for 20-nm thick, 2-um diameter disks. The resonance frequencies exhibit weak field dependence, and scale as a function of the dot geometrical aspect ratio. The measured frequencies are well described by micromagnetic and analytical calculations that rely only on known properties of the dots (such as the dot diameter, thickness, saturation magnetization, and exchange stiffness constant) without any adjustable parameters. We find that the observed resonance originates from the translational motion of the magnetic vortex core.Comment: submitted to PRB, 17 pages, 5 Fig

    High-Energy Emission From Millisecond Pulsars

    Full text link
    The X-ray and gamma-ray spectrum of rotation-powered millisecond pulsars is investigated in a model for acceleration and pair cascades on open field lines above the polar caps. Although these pulsars have low surface magnetic fields, their short periods allow them to have large magnetospheric potential drops, but the majority do not produce sufficient pairs to completely screen the accelerating electric field. The accelerating particles maintain high Lorentz factors and undergo cyclotron resonant absorption of radio emission, that produces and maintains a large pitch angle, resulting in a strong synchrotron component. The resulting spectra consist of several distinct components: curvature radiation from primary electrons dominating from 1 - 100 GeV, synchrotron radiation from primary and secondary electrons dominating up to about 100 MeV, and much weaker inverse-Compton radiation from primary electrons at 0.1 - 1 TeV. We find that the relative size of these components depends on pulsar period, period derivative, and neutron star mass and radius with the level of the synchrotron component also depending sensitively on the radio emission properties. This model is successful in describing the observed X-ray and gamma-ray spectrum of PSR J0218+4232 as synchrotron radiation, peaking around 100 MeV and extending up to a turnover around several GeV. The predicted curvature radiation components from a number of millisecond pulsars, as well as the collective emission from the millisecond pulsars in globular clusters, should be detectable with AGILE and GLAST. We also discuss a hidden population of X-ray-quiet and radio-quiet millisecond pulsars which have evolved below the pair death line, some of which may be detectable by telescopes sensitive above 1 GeV.Comment: 34 pages, 6 figures, accepted for publication in Astrophysical Journa

    Afterglow Light Curve Modulated by a Highly Magnetized Millisecond Pulsar

    Get PDF
    We investigate consequences of a continuously energy-injecting central engine of gamma-ray burst (GRB) afterglow emission, assuming that a highly magnetized pulsar is left beaming in the core of a GRB progenitor. Beaming and continuous energy-injection are natural consequences of the pulsar origin of GRB afterglows. Whereas previous studies have considered continuous energy-injection from a new-born pulsar to interpret the deviation of afterglow light curves of GRBs from those with the simple power law behavior, a beaming effect, which is one of the most important aspects of pulsar emissions, is ignored in earlier investigations. We explicitly include the beaming effect and consider a change of the beaming with time due to a dynamical evolution of a new-born pulsar. We show that the magnitude of the afterglow from this fireball indeed first decreases with time, subsequently rises, and declines again. One of the most peculiar optical afterglows light curve of GRB 970508 can be accounted for by continuous energy injection with beaming due to a highly magnetized new-born pulsar. We discuss implications on such observational evidence for a pulsar.Comment: 4 pages, 1 table, submitted to Astronomy and Astrophysics (Letters

    Dissipation in Poynting-flux Dominated Flows: the Sigma-Problem of the Crab Pulsar Wind

    Full text link
    Flows in which energy is transported predominantly as Poynting flux are thought to occur in pulsars, gamma-ray bursts and relativistic jets from compact objects. The fluctuating component of the magnetic field in such a flow can in principle be dissipated by magnetic reconnection, and used to accelerate the flow. We investigate how rapidly this transition can take place, by implementing into a global MHD model, that uses a thermodynamic description of the plasma, explicit, physically motivated prescriptions for the dissipation rate: a lower limit on this rate is given by limiting the maximum drift speed of the current carriers to that of light, an upper limit follows from demanding that the dissipation zone expand only subsonically in the comoving frame and a further prescription is obtained by assuming that the expansion speed is limited by the growth rate of the relativistic tearing mode. In each case, solutions are presented which give the Lorentz factor of a spherical wind containing a transverse, oscillating magnetic field component as a function of radius. In the case of the Crab pulsar, we find that the Poynting flux can be dissipated before the wind reaches the inner edge of the Nebula if the pulsar emits electron positron pairs at a rate >1.E40 per second, thus providing a possible solution to the sigma-problem.Comment: Accepted for publication in Ap

    Evolution and stability of a magnetic vortex in small cylindrical ferromagnetic particle under applied field

    Full text link
    The energy of a displaced magnetic vortex in a cylindrical particle made of isotropic ferromagnetic material (magnetic dot) is calculated taking into account the magnetic dipolar and the exchange interactions. Under the simplifying assumption of small dot thickness the closed-form expressions for the dot energy is written in a non-perturbative way as a function of the coordinate of the vortex center. Then, the process of losing the stability of the vortex under the influence of the externally applied magnetic field is considered. The field destabilizing the vortex as well as the field when the vortex energy is equal to the energy of a uniformly magnetized state are calculated and presented as a function of dot geometry. The results (containing no adjustable parameters) are compared to the recent experiment and are in good agreement.Comment: 4 pages, 2 figures, RevTe

    The Compact Central Object in the Supernova Remnant G266.2-1.2

    Get PDF
    We observed the compact central object CXOU J085201.4--461753 in the supernova remnant G266.2--1.2 (RX J0852.0--4622) with the Chandra ACIS detector in timing mode. The spectrum of this object can be described by a blackbody model with the temperature kT=404 eV and radius of the emitting region R=0.28 km, at a distance of 1 kpc. Power-law and thermal plasma models do not fit the source spectrum. The spectrum shows a marginally significant feature at 1.68 keV. Search for periodicity yields two candidate periods, about 301 ms and 33 ms, both significant at a 2.1 sigma level; the corresponding pulsed fractions are 13% and 9%, respectively. We find no evidence for long-term variability of the source flux, nor do we find extended emission around the central object. We suggest that CXOU J085201.4--461753 is similar to CXOU J232327.9+584842, the central source of the supernova remnant Cas A. It could be either a neutron star with a low or regular magnetic field, slowly accreting from a fossil disk, or, more likely, an isolated neutron star with a superstrong magnetic field. In either case, a conservative upper limit on surface temperature of a 10 km radius neutron star is about 90 eV, which suggests accelerated cooling for a reasonable age of a few thousand years.Comment: Accepted to ApJ, 13 pages, 1 figur
    corecore